问题探究(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出

问题探究(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;... 问题探究(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;问题解决(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长,若不存在,请说明理由. 展开
 我来答
百度网友8a7e25eeab8
推荐于2016-02-09 · 超过65用户采纳过TA的回答
知道答主
回答量:114
采纳率:0%
帮助的人:55.9万
展开全部
(1)①作AD的垂直平分线交BC于点P,如图①,
则PA=PD.
∴△PAD是等腰三角形.
∵四边形ABCD是矩形,
∴AB=DC,∠B=∠C=90°.
∵PA=PD,AB=DC,
∴Rt△ABP≌Rt△DCP(HL).
∴BP=CP.
∵BC=4,
∴BP=CP=2.
②以点D为圆心,AD为半径画弧,交BC于点P′,如图①,
则DA=DP′.
∴△P′AD是等腰三角形.
∵四边形ABCD是矩形,
∴AD=BC,AB=DC,∠C=90°.
∵AB=3,BC=4,
∴DC=3,DP′=4.
∴CP′=
42?32
=
7

∴BP′=4-
7

③点A为圆心,AD为半径画弧,交BC于点P″,如图①,
则AD=AP″.
∴△P″AD是等腰三角形.
同理可得:BP″=
7

综上所述:在等腰三角形△ADP中,
若PA=PD,则BP=2;
若DP=DA,则BP=4-
7

若AP=AD,则BP=
7


(2)∵E、F分别为边AB、AC的中点,
∴EF∥BC,EF=
1
2
BC.
∵BC=12,
∴EF=6.
以EF为直径作⊙O,过点O作OQ⊥BC,垂足为Q,连接EQ、FQ,如图②.
∵AD⊥BC,AD=6,
∴EF与BC之间的距离为3.
∴OQ=3
∴OQ=OE=3.
∴⊙O与BC相切,切点为Q.
∵EF为⊙O的直径,
∴∠EQF=90°.
过点E作EG⊥BC,垂足为G,如图②.
∵EG⊥BC,OQ⊥BC,
∴EG∥OQ.
∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,
∴四边形OEGQ是正方形.
∴GQ=EO=3,EG=OQ=3.
∵∠B=60°,∠EGB=90°,EG=3,
∴BG=
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消