八年级数学寒假作业课标版答案
展开全部
证明:sinA+sinB+sinC
=2sin[(A+B)/2]cos[(A-B)/2]+sinC
=2cos(C/2)cos[(A-B)/2]+2sin(C/2)cos(C/2)
=2cos(C/2){cos[(A-B)/2]+cos[(A+B)/2]}
=2cos(C/2)[2cos(A/2)cos(B/2)]
=4(cosA/2)(cosB/2)(cosC/2)
根据和差化积,
sinA+sinB+sinC
=2sin[(A+B)/2]cos[(A-B)/2]+sinC
=2cos(C/2)cos[(A-B)/2]+2sin(C/2)cos(C/2)
=2cos(C/2){cos[(A-B)/2]+cos[(A+B)/2]}
=2cos(C/2)[2cos(A/2)cos(B/2)]
=4(cosA/2)(cosB/2)(cosC/2)
=2sin[(A+B)/2]cos[(A-B)/2]+sinC
=2cos(C/2)cos[(A-B)/2]+2sin(C/2)cos(C/2)
=2cos(C/2){cos[(A-B)/2]+cos[(A+B)/2]}
=2cos(C/2)[2cos(A/2)cos(B/2)]
=4(cosA/2)(cosB/2)(cosC/2)
根据和差化积,
sinA+sinB+sinC
=2sin[(A+B)/2]cos[(A-B)/2]+sinC
=2cos(C/2)cos[(A-B)/2]+2sin(C/2)cos(C/2)
=2cos(C/2){cos[(A-B)/2]+cos[(A+B)/2]}
=2cos(C/2)[2cos(A/2)cos(B/2)]
=4(cosA/2)(cosB/2)(cosC/2)
2015-01-21
展开全部
要么认真做 要么别做
追答
老师不看的 全凭自觉 抄不如不做 还浪费时间
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询