八年级数学寒假作业课标版答案

 我来答
东方明珠246
2015-01-21 · TA获得超过4.9万个赞
知道大有可为答主
回答量:1.9万
采纳率:0%
帮助的人:4667万
展开全部
证明:sinA+sinB+sinC
=2sin[(A+B)/2]cos[(A-B)/2]+sinC
=2cos(C/2)cos[(A-B)/2]+2sin(C/2)cos(C/2)
=2cos(C/2){cos[(A-B)/2]+cos[(A+B)/2]}
=2cos(C/2)[2cos(A/2)cos(B/2)]
=4(cosA/2)(cosB/2)(cosC/2)
根据和差化积,
sinA+sinB+sinC
=2sin[(A+B)/2]cos[(A-B)/2]+sinC
=2cos(C/2)cos[(A-B)/2]+2sin(C/2)cos(C/2)
=2cos(C/2){cos[(A-B)/2]+cos[(A+B)/2]}
=2cos(C/2)[2cos(A/2)cos(B/2)]
=4(cosA/2)(cosB/2)(cosC/2)
匿名用户
2015-01-21
展开全部
要么认真做 要么别做
追答
老师不看的 全凭自觉 抄不如不做 还浪费时间
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式