在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP.求点P到平面ABD
在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP.求点P到平面ABD1的距离;...
在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP.求点P到平面ABD1的距离;
展开
1个回答
展开全部
方法一:“等积转换”.
如果直接研究三棱锥P-ABD1的体积,无论怎样“转换”都不易求;
在DD1上取一点Q,使DD1=4DQ,则PQ∥面ABD1,如图1;故VP-ABD1=VQ-ABD1,
记P到面ABD1的距离为h,则Q到面ABD1的距离为h,由VQ-ABD1=VB-QAD1得:h=
;
方法二:以D为原点建系,如图2,A(4,0,0),B(4,4,0),D1(0,0,4),
P(0,4,1),不难求出面ABD1的法向量
=(1,0,1),
=(4,0,-1),h=
=
;
方法三:“补齐”截面ABD1即正方体的对角面ABC1D1,过P作PE⊥BC1于E,如图3,
∵PE⊥AB,∴PE⊥面ABD1,∴PE的长度即为点P到平面ABD1的距离,易求PE=
.
如果直接研究三棱锥P-ABD1的体积,无论怎样“转换”都不易求;
在DD1上取一点Q,使DD1=4DQ,则PQ∥面ABD1,如图1;故VP-ABD1=VQ-ABD1,
记P到面ABD1的距离为h,则Q到面ABD1的距离为h,由VQ-ABD1=VB-QAD1得:h=
3
| ||
2 |
方法二:以D为原点建系,如图2,A(4,0,0),B(4,4,0),D1(0,0,4),
P(0,4,1),不难求出面ABD1的法向量
? |
n |
. |
PB |
3 | ||
|
3
| ||
2 |
方法三:“补齐”截面ABD1即正方体的对角面ABC1D1,过P作PE⊥BC1于E,如图3,
∵PE⊥AB,∴PE⊥面ABD1,∴PE的长度即为点P到平面ABD1的距离,易求PE=
3
| ||
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询