如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=6,∠ABE=45°,若AE=5,求CE的长
如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=6,∠ABE=45°,若AE=5,求CE的长....
如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=6,∠ABE=45°,若AE=5,求CE的长.
展开
展开全部
解:如图,过点B作BF⊥AD交DA的延长线于F,
∵AD∥BC,∠D=90°,BC=CD,
∴四边形BCDF是正方形,
把△BCE绕点B顺时针旋转90°得到△BFG,
则CE=FG,BE=BG,∠CBE=∠FBG,
∵∠ABE=45°,
∴∠ABG=∠ABF+∠FBG=∠ABF+∠CBE=90°-∠ABE=90°-45°=45°,
∴∠ABE=∠ABG,
在△ABE和△ABG中,
,
∴△ABE≌△ABG(SAS),
∴AE=AG,
∴AF+CE=AF+FG=AG=AE,
设CE=x,则DE=6-x,AF=5-x,
∴AD=6-(5-x)=x+1,
在Rt△ADE中,AD2+DE2=AE2,
即(x+1)2+(6-x)2=52,
整理得,x2-5x+6=0,
解得x1=2,x2=3,
所以CE的长度是2或3.
∵AD∥BC,∠D=90°,BC=CD,
∴四边形BCDF是正方形,
把△BCE绕点B顺时针旋转90°得到△BFG,
则CE=FG,BE=BG,∠CBE=∠FBG,
∵∠ABE=45°,
∴∠ABG=∠ABF+∠FBG=∠ABF+∠CBE=90°-∠ABE=90°-45°=45°,
∴∠ABE=∠ABG,
在△ABE和△ABG中,
|
∴△ABE≌△ABG(SAS),
∴AE=AG,
∴AF+CE=AF+FG=AG=AE,
设CE=x,则DE=6-x,AF=5-x,
∴AD=6-(5-x)=x+1,
在Rt△ADE中,AD2+DE2=AE2,
即(x+1)2+(6-x)2=52,
整理得,x2-5x+6=0,
解得x1=2,x2=3,
所以CE的长度是2或3.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询