设函数f(x)在x=x0处二阶导数存在,且f"(x0)<0,f'(x0)=0,则必存在δ>0,使得
设函数f(x)在x=x0处二阶导数存在,且f"(x0)<0,f'(x0)=0,则必存在δ>0,使得A.曲线y=f(x)在区间(x0-δ,x0+δ)上是凸的。B.曲线y=f...
设函数f(x)在x=x0处二阶导数存在,且f"(x0)<0,f'(x0)=0,则必存在δ>0,使得
A.曲线y=f(x)在区间(x0-δ,x0+δ)上是凸的。
B.曲线y=f(x)在区间(x0-δ,x0+δ)上是凹的。
C.曲线y=f(x)在区间(x0-δ,x0]是严格单调增,在区间[x0,x0+δ)是严格单调减
D.曲线y=f(x)在区间(x0-δ,x0]是严格单调减,在区间[x0,x0+δ)是严格单调增
答案选C
为什么A错误???
展开
A.曲线y=f(x)在区间(x0-δ,x0+δ)上是凸的。
B.曲线y=f(x)在区间(x0-δ,x0+δ)上是凹的。
C.曲线y=f(x)在区间(x0-δ,x0]是严格单调增,在区间[x0,x0+δ)是严格单调减
D.曲线y=f(x)在区间(x0-δ,x0]是严格单调减,在区间[x0,x0+δ)是严格单调增
答案选C
为什么A错误???
展开
展开全部
因为只给定了一点的二阶导数存在。
更多追问追答
追问
没听懂😭 是区间内有些点可能不连续的意思么
再讲讲 还挺懂 可以画一个反例的大概图像嘛
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
只给出某一点的函数的二阶函数值等零,是无法判断函数在某一具体区间上是上凸还是下凸。这一题明显A错误。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
g(x)=f(x)/x
g'(x)=(xf'(x)-f(x))/x^2
分子的导数:h'(x)=(xf'(x)-f(x))'=xf''(x)+f'(x)-f’(x)=xf''(x)>0
故h(x)单调增加,h(x)>h(0)=0,分子h(x)=xf'(x)-f(x)>0
g'(x)>0,所以:
g(x)=f(x)/x在(0,+正无穷大)上单调增加
g(x)=f(x)/x
g'(x)=(xf'(x)-f(x))/x^2
分子的导数:h'(x)=(xf'(x)-f(x))'=xf''(x)+f'(x)-f’(x)=xf''(x)>0
故h(x)单调增加,h(x)>h(0)=0,分子h(x)=xf'(x)-f(x)>0
g'(x)>0,所以:
g(x)=f(x)/x在(0,+正无穷大)上单调增加
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询