
用综合法证明,设a>0,b>0且a+b=1则(a+1/a)^2+(b+1/b)^2>=25/2
1个回答
展开全部
(a+1/a)^2+(b+1/b)^2
≥[(a+1/a)+(b+1/b)]^2/2
=(a+(a+b)/a+b+(a+b)/b]^2/2
=(a+b+1+b/a+1+a/b)^2/2
=(3+b/a+a/b)^2/2
≥(3+2)^2/2
=25/2
≥[(a+1/a)+(b+1/b)]^2/2
=(a+(a+b)/a+b+(a+b)/b]^2/2
=(a+b+1+b/a+1+a/b)^2/2
=(3+b/a+a/b)^2/2
≥(3+2)^2/2
=25/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询