学子斋三元一次方程组解法视频

 我来答
素汐CD
2015-05-15 · TA获得超过4003个赞
知道小有建树答主
回答量:732
采纳率:50%
帮助的人:108万
展开全部
zgxq2
商城
消息
|
百度首页

新闻网页贴吧知道音乐图片视频地图百科文库
进入词条搜索词条帮助

首页
分类
自然
文化
地理
历史
生活
社会
艺术
人物
经济
科技
体育
特色百科
历史上的今天
数字博物馆
城市百科
特色词条
数字方志馆
史记·2014
用户
蝌蚪团
燃梦计划
百科任务
百科商城
权威合作
合作模式
合作流程
联系方式
手机百科
客户端
网页版
个人中心

收藏
1732
378
三元一次方程组编辑
如果方程组中含有三个未知数,每个方程中含有未知数的项的次数都是一,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组!常用的未知数有x,y,z。
中文名
三元一次方程组
应用学科
数学
目录
1解法
2概念
3应用
4目的与要求
5知识要点

1解法编辑
解三元一次方程组的基本思路是:通过“代入”或“加减”进行消元,那“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程。
他们主要的解法就是加减消元法和代入消元法,通常采用加减消元法,若方程难解就用代入消元法,因题而异。其思路都是利用消元法逐步消元。[1]

2概念编辑
含有三个相同的未知数,每个方程中含未知数的项的次数都是一次,叫做三元一次方程组。方程组中,少于3个方程,则无法求所有未知数的解,故一般的三元一次方程是三个方程组成的方程组。

3应用编辑
三元一次方程简单应用
{x+2y+z=7
2x-y+3z=7
3x+y+2z=18}组:
{x+2y+z=7 ①
2x-y+3z=7 ②
3x+y+2z=18 ③ }
解:①+②×2得:5x+7z=21 ④
②+③得:x+z=5 ⑤
联立④、⑤得:
{5x+7z=21
x+z=5}
利用二元一次方程解法解得:
{x=7,z=-2}
把x=7,z=-2代入①,可解得y=1
所以原方程组的解为:
{x=7,y=1,z=-2}
三元一次方程复杂应用
{ a1x+b1y+c1z=d1
a2x+b2y+c2z=d2
a3x+b3y+c3z=d3 }组:
x y z 未知数 ,a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3 为常数,解x y z 值。
{ a1x+b1y+c1z=d1 ①
  a2x+b2y+c2z=d2 ②
  a3x+b3y+c3z=d3 ③ }
解:{ b1y=d1-a1x-c1z ④
b2y=d2-a2x-c2z ⑤
b3y=d3-a3x-c3z ⑥}
④÷⑤
b1/b2*(d2-a2x-c2z)=d1-a1x-c1z ⑦
  ⑤÷⑥
  b2/b3*(d3-a3x-c3z)=d2-a2x-c2z ⑧
由⑦得:
  b1/b2*d2-b1/b2*a2x-b1/b2*c2z=d1-a1x-c1z
a1x-b1/b2*a2x+c1z-b1/b2*c2z=d1-b1/b2*d2
(a1-b1/b2*a2)x+(c1-b1/b2*c2)z=d1-b1/b2*d2
(c1-b1/b2*c2)z=d1-b1/b2*d2-(a1-b1/b2*a2)x ⑨
由⑧得:
b2/b3*d3-b2/b3*a3x-b2/b3*c3z=d2-a2x-c2z
a2x+c2z-b2/b3*a3x-b2/b3*c3z=d2-b2/b3*d3
(a2-b2/b3*a3)x+(c2-b2/b3*c3)Z=d2-b2/b3*d3
(c2-b2/b3*c3)Z=d2-b2/b3*d3-(a2-b2/b3*a3)x ⑩

  ⑨÷⑩

  [(c1-b1/b2*c2)÷(c2-b2/b3*c3)]*[d2-b2/b3*d3-(a2-b2/b3*a3)x]=d1-b1/b2*d2-(a1-b1/b2*a2)x ⑾
在⑾中a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3 都是常数,只有X是未知数,所以X值已解。把常数代
入式中求出X值,再将X值代入⑨或⑩,求出Z值,再将X Z值代入原式①②③中的一个,求出y值。
三元一次方程中x y z三个未知数值已解。
例题:
{2x+4y+6z=8 4x+2y+8z=6 8x+6y+2z=4
解得:
y=27/23 z=17/23 x=-13/23
2x+4y+6z=8 2*(-13/23)+4*(27/23 )+6*(17/23 )-8=0
  4x+2y+8z=6 4*(-13/23)+2*(27/23 )+8*(17/23 )-6=0
  8x+6y+2z=4 8*(-13/23)+6*(27/23 )+2*(17/23 )-4=0

4目的与要求编辑
1.了解三元一次方程组的概念;能熟练掌握简单的三元一次方程组的解法;能选择简便的解法解特殊的三元一次方程组.
2.能通过用代入消元法,加减消元法解简单的三元一次方程组,及选择合理,简捷的方法解方程组,培养运算能力.
3.通过对方程组中未知数系数特点的观察和分析,明确三元一次方程组解法的主要思路是
"消元",从而促成未知向已知的转化,培养和发展逻辑思维能力.
4.能将三元一次方程组通过消元转化为二元一次方程组,再消元转化为一元一次方程及将一些代数问题转化为方程组问题,初步运用转化思想去解决问题,发展思维能力.

5知识要点编辑
1.三元一次方程组的概念:
含有三个未知数,每个方程的未知项的次数都是1,并且共有三个方程,这样的方程组叫做三元一次方程组.
注意:每个方程不一定都含有三个未知数,但方程组整体上要含有三个未知数.
熟练掌握简单的三元一次方程组的解法
会叙述简单的三元一次方程组的解法思路及步骤.
思路:解三元一次方程组的基本思想仍是消元,其基本方法是代入法和加减法.
步骤:①利用代入法或加减法,消去一个未知数,得出一个二元一次方程组;
②解这个二元一次方程组,求得两个未知数的值;
③将这两个未知数的值代入原方程中较简单的一个方程,求出第三个未知数的值,把
这三个数写在一起的就是所求的三元一次方程组的解.
灵活运用加减消元法,代入消元法解简单的三元一次方程组.三元一次方程组的解法举例
例如:解下列三元一次方程组
例1.分析:此方程组可用代入法先消去y,把①代入②,得,
5x+3(2x-7)+2z=2
5x+6x-21+2z=2
解二元一次方程组,得:
把x=2代入①得,y=-3
分析:解三元一次方程组同解二元一次方程组类似,消元时,选择系数较简单的未知数较好.上述三元一次方程组中从三个方程的未知数的系数特点来考虑,先消z比较简单.
例2.解:①+②得,5x+y=26④
①+③得,3x+5y=42⑤
④与⑤组成方程组:
解这个方程组,得
把代入便于计算的方程③,得z=8
注意:为把三元一次方程组转化为二元一次方程组,原方程组中的每个方程至少要用一次.
能够选择简便,特殊的解法解特殊的三元一次方程组.
例如:解下列三元一次方程组
分析:此方程组中x,y,z出现的次数相同,系数也相同.根据这个特点,将三个方程
的两边分别相加解决较简便.
解:①+②+③得:2(x+y+z)=30
x+y+z=15④
再④-①得:z=5
④-②得:y=9
④-③得:x=1
分析:根据方程组特点,方程①和②给出了比例关系,可先设x=3k,y=2k,由②得:z=y,∴z=×2k=k,再把x=3k,y=2k,z=k代入③,可求出k值,进而求出x,y,z的值.
解:由①设x=3k,y=2k
由②设z=y=×2k=k
把x=3k,y=2k,z=k分别代入③,得
3k+2k+k=66,得k=10
∴x=3k=30
y=2k=20
z=k=16
参考资料

1. 方程_百度百科 .百度百科 [引用日期2013-04-14] .
词条标签:
理学

物理学

数学
三元一次方程组图册
词条统计
浏览次数:122091次
编辑次数:35次 历史版本
最近更新:3天前
创建者:23357823

百科消息:
▪泰安市博物馆,跟古代帝王奉祀泰山神
▪河洛石文化博物馆,饱览河洛奇石
▪【公告】词条打标签功能上线啦!

新手上路
成长任务编辑入门
编辑规则百科术语
我有疑问
常见问题我要提问
参加讨论意见反馈
投诉建议
举报不良信息未通过词条申诉
投诉侵权信息封禁查询与解封
分享

© 2015 Baidu 使用百度前必读 | 百科协议 | 百度百科合作平台
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式