一道高数题大神求解啊见图片
2个回答
展开全部
lim(x->0) [ tan(tanx) - sin(sinx) ]/[ x( e^(-x^2) - 1) ]
x-> 0
tanx(tanx) ~ [x + (1/3)x^3 ] + (1/3)[x + (1/3)x^3 ]^3
~ x + (2/3)x^3
sin(sinx) ~ [x- (1/6)x^3] -(1/6)[x- (1/6)x^3]^3
~ x - (1/3)x^3
e^(-x^2) ~ 1-x^2
tan(tanx) - sin(sinx) ~ x^3
x( e^(-x^2) -1) ~ x^3
lim(x->0) [ tan(tanx) - sin(sinx) ]/[ x( e^(-x^2) - 1) ]
=lim(x->0) x^3/x^3
=1
x-> 0
tanx(tanx) ~ [x + (1/3)x^3 ] + (1/3)[x + (1/3)x^3 ]^3
~ x + (2/3)x^3
sin(sinx) ~ [x- (1/6)x^3] -(1/6)[x- (1/6)x^3]^3
~ x - (1/3)x^3
e^(-x^2) ~ 1-x^2
tan(tanx) - sin(sinx) ~ x^3
x( e^(-x^2) -1) ~ x^3
lim(x->0) [ tan(tanx) - sin(sinx) ]/[ x( e^(-x^2) - 1) ]
=lim(x->0) x^3/x^3
=1
更多追问追答
追问
那个tan(tanx)和sin(sinx)的变换是怎么来的啊?
还有答案上说这是-3/2
追答
lim(x->0) [ tan(tanx) - sin(sinx) ]/[ x( e^(-x^2) - 1) ]
x-> 0
tanx(tanx) ~ [x + (1/3)x^3 ] + (1/3)[x + (1/3)x^3 ]^3
~ x + (2/3)x^3
sin(sinx) ~ [x- (1/6)x^3] -(1/6)[x- (1/6)x^3]^3
~ x - (1/3)x^3
e^(-x^2) ~ 1-x^2
tan(tanx) - sin(sinx) ~ x^3
x( e^(-x^2) -1) ~ -x^3
lim(x->0) [ tan(tanx) - sin(sinx) ]/[ x( e^(-x^2) - 1) ]
=lim(x->0) x^3/(-x^3)
=-1
e.g
tanx ~ x + (1/3)x^3
tan(tanx) ~[x + (1/3)x^3] + (1/3)[x + (1/3)x^3]^3
~ x+ (2/3)x^3
sinx ~ x - (1/6)x^3
sin(sinx) ~[x - (1/6)x^3] - (1/6)[x - (1/6)x^3]^3
~ x - (1/3)x^3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询