高等数学反常积分 1、2题
2个回答
展开全部
(1)
∫(0->x^2)f(t)dt =xcosπx
2xf(x^2) = =cosπx -πxsinπx
x=1
2f1) =cosπ -πsinπ
=-1
f(1) =-1/2
(2)
y=∫(0->arctanx) e^(-t^2) dt
dy/dx = [1/(1+x^2)].e^(-(arctanx)^2)
dy/dx|(0,0) = 1
切线方程 (0,0)
y-0 = 1(x-0)
y=x
y=f(x)
y' = f'(x)
y'|x=0 = f'(0) =1
lim(x->∞)xf(2/x)
=lim(x->∞)xf(2/x)
=lim(y->0) f(2y)/y (0/0)
=lim(y->0) 2f'(2y)
=2f'(0)
=2
∫(0->x^2)f(t)dt =xcosπx
2xf(x^2) = =cosπx -πxsinπx
x=1
2f1) =cosπ -πsinπ
=-1
f(1) =-1/2
(2)
y=∫(0->arctanx) e^(-t^2) dt
dy/dx = [1/(1+x^2)].e^(-(arctanx)^2)
dy/dx|(0,0) = 1
切线方程 (0,0)
y-0 = 1(x-0)
y=x
y=f(x)
y' = f'(x)
y'|x=0 = f'(0) =1
lim(x->∞)xf(2/x)
=lim(x->∞)xf(2/x)
=lim(y->0) f(2y)/y (0/0)
=lim(y->0) 2f'(2y)
=2f'(0)
=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询