选择题,求大神解答!
1.计算(x/2+1)(2x2-4x+1)得()A.x3-7x+1B.x3-7x/2+1C.x2-4xD.x+12.方程x(x-2)+3=(x+4)(x+3)的解是()A...
1.计算(x/2+1)(2x2-4x+1)得( )
A.x3-7x+1
B.x3-7x/2+1
C.x2-4x
D.x+1
2.
方程x(x-2)+3=(x+4)(x+3)的解是( )
A.x=-1
B.x=0
C.x=1
D.x=2 展开
A.x3-7x+1
B.x3-7x/2+1
C.x2-4x
D.x+1
2.
方程x(x-2)+3=(x+4)(x+3)的解是( )
A.x=-1
B.x=0
C.x=1
D.x=2 展开
3个回答
2015-12-04
展开全部
1.B
2.A
3.A
2.A
3.A
展开全部
【知识点】
若矩阵A的特征值为λ1,λ2,...,λn,那么|A|=λ1·λ2·...·λn
【解答】
|A|=1×2×...×n= n!
设A的特征值为λ,对于的特征向量为α。
则 Aα = λα
那么 (A²-A)α = A²α - Aα = λ²α - λα = (λ²-λ)α
所以A²-A的特征值为 λ²-λ,对应的特征向量为α
A²-A的特征值为 0 ,2,6,...,n²-n
【评注】
对于A的多项式,其特征值为对应的特征多项式。
线性代数包括行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量、矩阵的对角化,二次型及应用问题等内容。
若矩阵A的特征值为λ1,λ2,...,λn,那么|A|=λ1·λ2·...·λn
【解答】
|A|=1×2×...×n= n!
设A的特征值为λ,对于的特征向量为α。
则 Aα = λα
那么 (A²-A)α = A²α - Aα = λ²α - λα = (λ²-λ)α
所以A²-A的特征值为 λ²-λ,对应的特征向量为α
A²-A的特征值为 0 ,2,6,...,n²-n
【评注】
对于A的多项式,其特征值为对应的特征多项式。
线性代数包括行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量、矩阵的对角化,二次型及应用问题等内容。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第1题:B;第2题:A;第3题:B。望采纳。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询