不定方程的简单例题

 我来答
小希IR79
2016-05-14 · TA获得超过428个赞
知道答主
回答量:183
采纳率:85%
帮助的人:62.6万
展开全部

例1 求11x+15y=7的整数解.
解法1 将方程变形得11x=7-15y
因为x是整数,所以7-15y应是11的倍数.由观察得x0=2,y0=-1是这个方程的一组整数解,所以方程的解为x0=2,y0=-1
解法2 先考察11x+15y=1,通过观察易得
11×(-4)+15×⑶=1,
所以
11×(-4×7)+15×(3×7)=7,
可取x0=-28,y0=21.从而
可见,二元一次不定方程在无约束条件的情况下,通常有无数组整数解,由于求出的特解不同,同一个不定方程的解的形式可以不同,但它们所包含的全部解是一样的.将解中的参数t做适当代换,就可化为同一形式.
例2 求方程6x+22y=90的非负整数解.
解 因为(6,22)=2,所以方程两边同除以2得
3x+11y=45. ①
由观察知,x1=4,y1=-1是方程
3x+11y=1 ②
的一组整数解,从而方程①的一组整数解为
由定理,可得方程①的一切整数解为
因为要求的是原方程的非负整数解,所以必有
由于t是整数,由③,④得15≤t≤16,所以只有t=15,t=16两种可能.
当t=15时,x=15,y=0;当t=16时,x=4,y=3.所以原方程的非负整数解是
例3 求方程7x+19y=213的所有正整数解.
分析 这个方程的系数较大,用观察法去求其特殊解比较困难,碰到这种情况我们可用逐步缩小系数的方法使系数变小,最后再用观察法求得其解.
解 用方程
7x+19y=213 ①
的最小系数7除方程①的各项,并移项得
因为x,y是整数,故3-5y/7=u也是整数,于是5y+7u=3.T儆*5除此式的两边得
2u+5v=3. ④
由观察知u=-1,v=1是方程④的一组解.将u=-1,v=1代入③得y=2.y=2代入②得x=25.于是方程①有一组解x0=25,y0=2,所以它的一切解为
由于要求方程的正整数解,所以
解不等式,得t只能取0,1.因此得原方程的正整数解为
当方程的系数较大时,我们还可以用辗转相除法求其特解,其解法结合例题说明.
例4 求方程37x+107y=25的整数解.
解 107=2×37+33,
37=1×33+4,
33=8×4+1.
为用37和107表示1,我们把上述辗转相除过程回代,得
1=33-8×4=37-4-8×4=37-9×4
=37-9×(37-33)=9×33-8×37
=9×(107-2×37)8×37=9×107-26×37
=37×(-26)+107×9.
由此可知x1=-26,y1=9是方程37x+107y=1的一组整数解.于是
x0=25×(-26)=-650,y0=25×9=225
是方程37x+107y=25的一组整数解.
所以原方程的一切整数解为
例5 某国硬币有5分和7分两种,问用这两种硬币支付142分货款,有多少种不同的方法?
解 设需x枚7分,y枚5分恰好支付142分,于是
7x+5y=142. ①
所以
由于7x≤142,所以x≤20,并且由上式知5|2(x-1).因为(5,2)=1,所以5|x-1,从而x=1,6,11,16,①的非负整数解为
所以,共有4种不同的支付方式
说明 当方程的系数较小时,而且是求非负整数解或者是实际问题时,这时候的解的组数往往较少,可以用整除的性质加上枚举,也能较容易地解出方程.
多元一次不定方程可以化为二元一次不定方程.
例6 求方程9x+24y-5z=1000的整数解.
解 设9x+24y=3t,即3x+8y=t,于是3t-5z=1000.于是原方程可化为
用前面的方法可以求得①的解为
②的解为
消去t,得
大约1500年以前,中国古代数学家张丘建在他编写的《张丘建算经》里,曾经提出并解决了“百钱买百鸡”这个有名的数学问题,通俗地讲就是下例.
例7 今有公鸡每只五个钱,母鸡每只三个钱,小鸡每个钱三只.用100个钱买100只鸡,问公鸡、母鸡、小鸡各买了多少只?
解 设公鸡、母鸡、小鸡各买x,y,z只,由题意列方程组
①化简得 15x+9y+z=300. ③
③-②得 14x+8y=200,
即 7x+4y=100.
解7x+4y=1得
于是7x+4y=100的一个特解为
由定理知7x+4y=100的所有整数解为
由题意知,0<x,y,z<100,所以
由于t是整数,故t只能取26,27,28,而且x,y,z还应满足
x+y+z=100.
t x y z
26 4 18 78
27 8 11 81
28 12 4 84
即可能有三种情况:4只公鸡,18只母鸡,78只小鸡;或8只公鸡,11只母鸡,81只小鸡;或12只公鸡,4只母鸡,84只小鸡.

印思山U
2018-07-17
知道答主
回答量:1
采纳率:0%
帮助的人:871
展开全部
不对,,因为……
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
甘肃数学陆春
2018-06-08
知道答主
回答量:14
采纳率:0%
帮助的人:1.2万
展开全部
37x+107y=25,
解y=(25-37x)/107=(25-37x')/(-4)=(-12-37x'')/(-4)=3-37x'''
代入原式得x通式=-8+107x'''
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
塞和通59
2019-03-29
知道答主
回答量:13
采纳率:100%
帮助的人:6505
展开全部
例:11x+15y=7,
解,y通式=(7-11ⅹ)/15=(7-11x')/4=[7*(-10)*(-10)-11ⅹ'']/(2*2)=7*5*5-11ⅹ'''=175-11x'''=-1-11x′'''=-1-11t(注:t=x'''')
把y通式代入原式得x通式=2+15t。
甘肃数学陆春(百度可查)18298699902
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 3条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式