高中数学,需过程。只用算第一问
2个回答
展开全部
a1=2
an=2a(n-1)+2^(n+1)
等式两边同除以2^n
[an/2^n]=[a(n-1)/2^(n-1)]+2
[an/2^n]-[a(n-1)/2^(n-1)]=2
bn=an/2^n,则b(n-1)=a(n-1)/2^(n-1)
bn-b(n-1)=2
{bn}是等差数列
2)an/2^n=(a1/2)+2(n-1)=1+2(n-1)=2n-1
an=(2n-1)*2^n
1/bn*b(n+1)=1/[an/2^n*a(n+1)/2^(n+1)]=2^(2n+1)/an*a(n+1)
=2^(2n+1)/[(2n-1)*2^n*(2n+1)*2^(n+1)]=1/(2n-1)(2n+1)
所以,1/bn*b(n+1)=1/(2n-1)(2n+1)=[1/(2n-1)]-[1/(2n+1)]
Tn=(1-1/3)+(1/3-1/5)+...+[1/(2n-1)]-[1/(2n+1)]=1-[1/(2n+1)]=2n/(2n+1)
Tn=2n/(2n+1)
an=2a(n-1)+2^(n+1)
等式两边同除以2^n
[an/2^n]=[a(n-1)/2^(n-1)]+2
[an/2^n]-[a(n-1)/2^(n-1)]=2
bn=an/2^n,则b(n-1)=a(n-1)/2^(n-1)
bn-b(n-1)=2
{bn}是等差数列
2)an/2^n=(a1/2)+2(n-1)=1+2(n-1)=2n-1
an=(2n-1)*2^n
1/bn*b(n+1)=1/[an/2^n*a(n+1)/2^(n+1)]=2^(2n+1)/an*a(n+1)
=2^(2n+1)/[(2n-1)*2^n*(2n+1)*2^(n+1)]=1/(2n-1)(2n+1)
所以,1/bn*b(n+1)=1/(2n-1)(2n+1)=[1/(2n-1)]-[1/(2n+1)]
Tn=(1-1/3)+(1/3-1/5)+...+[1/(2n-1)]-[1/(2n+1)]=1-[1/(2n+1)]=2n/(2n+1)
Tn=2n/(2n+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询