中国古代数学题有哪些
中国古代数学题有:
1、百鸡术
“今有鸡翁一直钱五,鸡母直钱三,鸡雏三直钱一。凡百钱买鸡百只。问鸡翁母雏各几何”。
翻译:公鸡一只价格5钱,母鸡一只价格3钱,小鸡3只1钱,用100钱买鸡100只,公鸡母鸡小鸡各几只。
2、盈不足术
“今有(人)共买物,(每)人出八(钱),盈(余)三钱;人出七(钱),不足四(钱),问人数、物价各几何”。
翻译:有人买东西,每人出8钱,多余3钱,每人出7钱,缺4钱,问有几人,物价多少。
3、直线形和圆的面积计算方法
“今有田广十五步,从(音纵zong)十六步。问为田几何。”
翻译:有块田长15步,宽16步,问田的面积多少。
4、鸡兔同笼
“今有雉、兔同笼,上有三十五头,下有九十四足。问:雉、兔各几何?”
翻译:有鸡和兔在同个笼子里,有35个头,94只脚,问鸡和兔各几只。
5、重差理论
今有望海岛,立两表,齐高三丈,前后相去千步,令后表与前表参相直。从前表却行一百二十三步,人目着地取望岛峰,与表末参合。从后表却行一百二十七步,人目着地取望岛峰,亦与表末参合。问岛高及去表各几何?答曰:岛高四里五十五步;去表一百二里一百五十步。
翻译:假设测量海岛,立两根表高均为3丈,前后相距1000步,令后表与前表在同一直线上,从前表退行123 步,人目著地观测到岛峰,从后表退行127步,人目著地观测到岛峰,问岛高多少?岛与前表相距多远?
盈不足术是中国数学史上解应用问题的一种别开生面的创造,它在我国古代算法中占有相当重要的地位。
盈不足术还经过丝绸之路西传中亚阿拉伯国家,受到特别重视,被称为“契丹算法”,后来又传入欧洲,中世纪时期“双设法”曾长期统治了他们的数学王国。
参考资料来源:百度百科-百鸡术
1、方田: 主要讲述了平面几何图形面积的计算方法。包括长方形、等腰三角形、直角梯形、等腰梯形、圆形、扇形、弓形、圆环这八种图形面积的计算方法。另外还系统地讲述了分数的四则运算法则,以及求分子分母最大公约数等方法。
2、粟米:谷物粮食的按比例折换;提出比例算法,称为今有术;衰分章提出比例分配法则,称为衰分术。
3、少广:已知面积、体积,反求其一边长和径长等;介绍了开平方、开立方的方法。
4、商功:土石工程、体积计算;除给出了各种立体体积公式外,还有工程分配方法。
5、均输:合理摊派赋税;用衰分术解决赋役的合理负担问题。今有术、衰分术及其应用方法,构成了包括今天正、反比例、比例分配、复比例、连锁比例在内的整套比例理论。西方直到15世纪末以后才形成类似的全套方法。
6、盈不足:即双设法问题;提出了盈不足、盈适足和不足适足、两盈和两不足三种类型的盈亏问题,以及若干可以通过两次假设化为盈不足问题的一般问题的解法。这也是处于世界领先地位的成果,传到西方后,影响极大。
参考资料来源:百度百科-九章算术
最著名的是“鸡兔同笼”这类的数学题。
鸡兔同笼,是中国古代著名典型趣题之一,记载于《孙子算经》之中。鸡兔同笼问题,是小学奥数的常见题型。在它的解法中,通常是假设法比较简单易懂一点。
鸡兔同笼是中国古代的数学名题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:
今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
这四句话的意思是:
有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有多少只鸡和兔?
算这个有个最简单的算法。
(总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数
(94-35×2)÷2=12(兔子数) 总头数(35)-兔子数(12)=鸡数(23)
解释:让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了总头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子的两只脚,再÷2就是兔子数。
扩展资料
《孙子算经》是中国古代重要的数学著作。成书大约在四、五世纪,也就是大约一千五百年前,作者生平和编写年不详。
传本的《孙子算经》共三卷。卷上叙述算筹记数的纵横相间制度和筹算乘除法,卷中举例说明筹算分数算法和筹算开平方法。卷下第31题,可谓是后世“鸡兔同笼”题的始祖,后来传到日本,变成“鹤龟算”。
参考资料来源:百度百科-鸡兔同笼
参考资料来源:百度百科-孙子算经
中国古代数学题有
1、两鼠穿墙
我国古代数学典籍《九章算术》第七章“盈不足”中有一道两鼠穿墙问题:今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺。大鼠日自倍,小鼠日自半。问何日相逢,各穿几何?
今意为:有厚墙5尺,两只老鼠从墙的两边相对分别打洞穿墙。大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半。问几天后两鼠相遇,各穿几尺?
2、鸡兔同笼
鸡兔同笼是中国古代的数学名题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有多少只鸡和兔?
3、李白打酒
李白街上走,提壶去打酒;遇店加一倍,见花喝一斗;三遇店和花,喝光壶中酒。试问酒壶中,原有多少酒?这是一道民间算题。
题意是:李白在街上走,提着酒壶边喝边打酒,每次遇到酒店将壶中酒加一倍,每次遇到花就喝去一斗(斗是古代容量单位,1斗=10升),这样遇店见花各3次,把酒喝完。问壶中原来有酒多少?
4、今有物不知其数
“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?”题目的意思就是:有一些物品,不知道有多少个,只知道将它们三个三个地数,会剩下2个;五个五个地数,会剩下3个;七个七个地数,也会剩下2个。这些物品的数量至少是多少个?
5、及时梨果
元代数学家朱世杰于1303年编著的《四元玉鉴》中有这样一道题目:九百九十九文钱,及时梨果买一千,一十一文梨九个,七枚果子四文钱。问:梨果多少价几何?此题的题意是:用999文钱买得梨和果共1000个,梨11文买9个,果4文买7个。问买梨、果各几个,各付多少钱?
1、两鼠穿墙
我国古代数学典籍《九章算术》第七章“盈不足”中有一道两鼠穿墙问题:今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺。大鼠日自倍,小鼠日自半。问何日相逢,各穿几何?
今意为:有厚墙5尺,两只老鼠从墙的两边相对分别打洞穿墙。大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半。问几天后两鼠相遇,各穿几尺?
2、鸡兔同笼
鸡兔同笼是中国古代的数学名题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有多少只鸡和兔?
3、李白打酒
李白街上走,提壶去打酒;遇店加一倍,见花喝一斗;三遇店和花,喝光壶中酒。试问酒壶中,原有多少酒?这是一道民间算题。
题意是:李白在街上走,提着酒壶边喝边打酒,每次遇到酒店将壶中酒加一倍,每次遇到花就喝去一斗(斗是古代容量单位,1斗=10升),这样遇店见花各3次,把酒喝完。问壶中原来有酒多少?
4、今有物不知其数
“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?”题目的意思就是:有一些物品,不知道有多少个,只知道将它们三个三个地数,会剩下2个;五个五个地数,会剩下3个;七个七个地数,也会剩下2个。这些物品的数量至少是多少个?
5、及时梨果
元代数学家朱世杰于1303年编著的《四元玉鉴》中有这样一道题目:九百九十九文钱,及时梨果买一千,一十一文梨九个,七枚果子四文钱。问:梨果多少价几何?此题的题意是:用999文钱买得梨和果共1000个,梨11文买9个,果4文买7个。问买梨、果各几个,各付多少钱?