矩阵乘法的最小时间复杂度是多少
1个回答
展开全部
x³=x²-4x+4
x³-x²+4x-4=0
x²(x-1)+4(x-1)=0
(x²+4))(x-1)=0
x=1
所以交点(1,1)
x³和(x-2)²与x轴交点是(0,0),(2,0)
所以面积=∫(0到1)x³dx+∫(1到2)(x-2)²dx
=x^4/4(0到1)+(x-2)³/3(1到2)
=(1/4-0)+(0+1/3)
=7/12
x³-x²+4x-4=0
x²(x-1)+4(x-1)=0
(x²+4))(x-1)=0
x=1
所以交点(1,1)
x³和(x-2)²与x轴交点是(0,0),(2,0)
所以面积=∫(0到1)x³dx+∫(1到2)(x-2)²dx
=x^4/4(0到1)+(x-2)³/3(1到2)
=(1/4-0)+(0+1/3)
=7/12
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询