作业急需,求助各位大神!!
1个回答
展开全部
1.
∫xe^x dx
=∫x d(e^x)
=xe^x - ∫e^x dx
=xe^x - e^x +C
=(x-1)e^x + C
2.
设t=xy
原式
=lim t→0 t/[√(t+1) -1]
分子分母同乘√(t+1) +1
=lim t→0 t[√(t+1) +1]/[√(t+1) -1][√(t+1) +1]
=lim t→0 t[√(t+1) +1]/t
=lim t→0 √(t+1) +1
=2
3.
∫(π/4,0) cosx dx
=sinx |(π/4,0)
=√2/2 -0
=√2/2
∫xe^x dx
=∫x d(e^x)
=xe^x - ∫e^x dx
=xe^x - e^x +C
=(x-1)e^x + C
2.
设t=xy
原式
=lim t→0 t/[√(t+1) -1]
分子分母同乘√(t+1) +1
=lim t→0 t[√(t+1) +1]/[√(t+1) -1][√(t+1) +1]
=lim t→0 t[√(t+1) +1]/t
=lim t→0 √(t+1) +1
=2
3.
∫(π/4,0) cosx dx
=sinx |(π/4,0)
=√2/2 -0
=√2/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询