指数函数的导数公式推导过程是什么?
3个回答
展开全部
这里将列举几个基本的函数的导数以及它们的推导过程:
1.y=c(c为常数)
y'=0
2.y=x^n
y'=nx^(n-1)
3.y=a^x
y'=a^xlna
y=e^x
y'=e^x
4.y=logax(a为底数,x为真数)
y'=1/x*lna
y=lnx
y'=1/x
5.y=sinx
y'=cosx
6.y=cosx
y'=-sinx
7.y=tanx
y'=1/cos^2x
8.y=cotx
y'=-1/sin^2x
9.y=arcsinx
y'=1/√1-x^2
10.y=arccosx
y'=-1/√1-x^2
11.y=arctanx
y'=1/1+x^2
12.y=arccotx
y'=-1/1+x^2
13.y=u^v
==>
y'=v'
*
u^v
*
lnu
+
u'
*
u^(v-1)
*
v
在推导的过程中有这几个常见的公式需要用到:
1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』
2.y=u/v,y'=u'v-uv'/v^2
3.y=f(x)的反函数是x=g(y),则有y'=1/x'
证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,△y=c-c=0,lim△x→0△y/△x=0。
2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到
y=e^x
y'=e^x和y=lnx
y'=1/x这两个结果后能用复合函数的求导给予证明。
3.y=a^x,
△y=a^(x+△x)-a^x=a^x(a^△x-1)
△y/△x=a^x(a^△x-1)/△x
如果直接令△x→0,是不能导出导函数的,必须设一个辅助的函数β=a^△x-1通过换元进行计算。由设的辅助函数可以知道:△x=loga(1+β)。
所以(a^△x-1)/△x=β/loga(1+β)=1/loga(1+β)^1/β
显然,当△x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。
把这个结果代入lim△x→0△y/△x=lim△x→0a^x(a^△x-1)/△x后得到lim△x→0△y/△x=a^xlna。
可以知道,当a=e时有y=e^x
y'=e^x。
4.y=logax
△y=loga(x+△x)-logax=loga(x+△x)/x=loga[(1+△x/x)^x]/x
△y/△x=loga[(1+△x/x)^(x/△x)]/x
因为当△x→0时,△x/x趋向于0而x/△x趋向于∞,所以lim△x→0loga(1+△x/x)^(x/△x)=logae,所以有
lim△x→0△y/△x=logae/x。
可以知道,当a=e时有y=lnx
y'=1/x。
这时可以进行y=x^n
y'=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx•(nlnx)'=x^n•n/x=nx^(n-1)。
5.y=sinx
△y=sin(x+△x)-sinx=2cos(x+△x/2)sin(△x/2)
△y/△x=2cos(x+△x/2)sin(△x/2)/△x=cos(x+△x/2)sin(△x/2)/(△x/2)
所以lim△x→0△y/△x=lim△x→0cos(x+△x/2)•lim△x→0sin(△x/2)/(△x/2)=cosx
6.类似地,可以导出y=cosx
y'=-sinx。
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2
13.联立:
①(ln(u^v))'=(v
*
lnu)'
②(ln(u^v))'=ln'(u^v)
*
(u^v)'=(u^v)'
/
(u^v)
另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与
4.y=u土v,y'=u'土v'
5.y=uv,y=u'v+uv'
1.y=c(c为常数)
y'=0
2.y=x^n
y'=nx^(n-1)
3.y=a^x
y'=a^xlna
y=e^x
y'=e^x
4.y=logax(a为底数,x为真数)
y'=1/x*lna
y=lnx
y'=1/x
5.y=sinx
y'=cosx
6.y=cosx
y'=-sinx
7.y=tanx
y'=1/cos^2x
8.y=cotx
y'=-1/sin^2x
9.y=arcsinx
y'=1/√1-x^2
10.y=arccosx
y'=-1/√1-x^2
11.y=arctanx
y'=1/1+x^2
12.y=arccotx
y'=-1/1+x^2
13.y=u^v
==>
y'=v'
*
u^v
*
lnu
+
u'
*
u^(v-1)
*
v
在推导的过程中有这几个常见的公式需要用到:
1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』
2.y=u/v,y'=u'v-uv'/v^2
3.y=f(x)的反函数是x=g(y),则有y'=1/x'
证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,△y=c-c=0,lim△x→0△y/△x=0。
2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到
y=e^x
y'=e^x和y=lnx
y'=1/x这两个结果后能用复合函数的求导给予证明。
3.y=a^x,
△y=a^(x+△x)-a^x=a^x(a^△x-1)
△y/△x=a^x(a^△x-1)/△x
如果直接令△x→0,是不能导出导函数的,必须设一个辅助的函数β=a^△x-1通过换元进行计算。由设的辅助函数可以知道:△x=loga(1+β)。
所以(a^△x-1)/△x=β/loga(1+β)=1/loga(1+β)^1/β
显然,当△x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。
把这个结果代入lim△x→0△y/△x=lim△x→0a^x(a^△x-1)/△x后得到lim△x→0△y/△x=a^xlna。
可以知道,当a=e时有y=e^x
y'=e^x。
4.y=logax
△y=loga(x+△x)-logax=loga(x+△x)/x=loga[(1+△x/x)^x]/x
△y/△x=loga[(1+△x/x)^(x/△x)]/x
因为当△x→0时,△x/x趋向于0而x/△x趋向于∞,所以lim△x→0loga(1+△x/x)^(x/△x)=logae,所以有
lim△x→0△y/△x=logae/x。
可以知道,当a=e时有y=lnx
y'=1/x。
这时可以进行y=x^n
y'=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx•(nlnx)'=x^n•n/x=nx^(n-1)。
5.y=sinx
△y=sin(x+△x)-sinx=2cos(x+△x/2)sin(△x/2)
△y/△x=2cos(x+△x/2)sin(△x/2)/△x=cos(x+△x/2)sin(△x/2)/(△x/2)
所以lim△x→0△y/△x=lim△x→0cos(x+△x/2)•lim△x→0sin(△x/2)/(△x/2)=cosx
6.类似地,可以导出y=cosx
y'=-sinx。
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2
13.联立:
①(ln(u^v))'=(v
*
lnu)'
②(ln(u^v))'=ln'(u^v)
*
(u^v)'=(u^v)'
/
(u^v)
另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与
4.y=u土v,y'=u'土v'
5.y=uv,y=u'v+uv'
Sievers分析仪
2024-12-30 广告
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
所有最基本的倒数推导都可以用△x, 当它趋向于0,来求
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设:指数函数为:y=a^x
y'=lim【△x→0】[a^(x+△x)-a^x]/△x
y'=lim【△x→0】{(a^x)[(a^(△x)]-a^x}/△x
y'=lim【△x→0】(a^x){[(a^(△x)]-1}/△x
y'=(a^x)lim【△x→0】{[(a^(△x)]-1}/△x…………(1)
设:[(a^(△x)]-1=M
则:△x=log【a】(M+1)
因此,有:‘
{[(a^(△x)]-1}/△x
=M/log【a】(M+1)
=1/log【a】[(M+1)^(1/M)]
当△x→0时,有M→0
故:
lim【△x→0】{[(a^(△x)]-1}/△x
=lim【M→0】1/log【a】[(M+1)^(1/M)]
=1/log【a】e
=lna
代入(1),有:
y'=(a^x)lim【△x→0】{[(a^(△x)]-1}/△x
y'=(a^x)lna
证毕.
y'=lim【△x→0】[a^(x+△x)-a^x]/△x
y'=lim【△x→0】{(a^x)[(a^(△x)]-a^x}/△x
y'=lim【△x→0】(a^x){[(a^(△x)]-1}/△x
y'=(a^x)lim【△x→0】{[(a^(△x)]-1}/△x…………(1)
设:[(a^(△x)]-1=M
则:△x=log【a】(M+1)
因此,有:‘
{[(a^(△x)]-1}/△x
=M/log【a】(M+1)
=1/log【a】[(M+1)^(1/M)]
当△x→0时,有M→0
故:
lim【△x→0】{[(a^(△x)]-1}/△x
=lim【M→0】1/log【a】[(M+1)^(1/M)]
=1/log【a】e
=lna
代入(1),有:
y'=(a^x)lim【△x→0】{[(a^(△x)]-1}/△x
y'=(a^x)lna
证毕.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询