定义域怎么求,详细举例说明
求函数的定义域需要从这几个方面入手:
(1)分母不为零。
(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1。
(5)y=tanx中x≠kπ+π/2。
不同函数的定义域求法不同,举例:y=√(x+1)的定义域。
因为√(x+1)是偶次根式,所以(x+1)≥0,即x≥-1。
扩展资料:
求函数定义域主要包括三种题型:抽象函数,一般函数,函数应用题。含义是指自变量 x的取值范围。
为了便于理解定义域的要求。出题的时候,往往用函数g(x)来代替x的位置, 比如:g(x)=sinx, 定义域为一切实数, 但是放在了分母,就随分母的定义域走,1/sinx, sinx≠0,求x的取值范围(定义域)。
放在了根号里,就随着根号的定义域走,√sinx, sinx≥0。再复杂一些的,如:1/√sinx,g(x)既在根号里,又做分母,就用两个函数的定义域来约束,sinx≥0和sinx≠0,满足这两个条件的公共区域就是sinx>0。
更复杂的是把不同的函数经过加、减、乘、除、开方、指数、对数、三角函数等运算放在一起,要你求定义域。遇到这种情况,就把函数分为几个部分,化整为零,一段一段地列出函数的定义域,再来求解。
解题后,千万要注意,把所求的结果,在数轴上画一下,几段定义域所求的值,一定在这些定义域相互包含的区域里,不能相互包含的x值要舍去。这样,才算完成了定义域的求解。
广告 您可能关注的内容 |