求级数的和函数
1个回答
展开全部
记 S(x) = ∑<n=1,∞>(x+1)^n/(n2^n)
则 S' = ∑<n=1,∞>(x+1)^(n-1)/2^n
= (1/2)∑<n=1,∞>[(x-1)/2]^(n-1)
= (1/2)∑<n=0,∞>[(x-1)/2]^n
= (1/2)/[1-(x-1)/2] = 1/(3-x)
收敛域 -1 < (x-1)/2 < 1, -2 < x-1 < 2, -1 < x < 3.
S(x) = ∫<-1, x> dt/(3-t) + S(-1) = 2ln2 - ln(3-x), -1 < x < 3.
则 S' = ∑<n=1,∞>(x+1)^(n-1)/2^n
= (1/2)∑<n=1,∞>[(x-1)/2]^(n-1)
= (1/2)∑<n=0,∞>[(x-1)/2]^n
= (1/2)/[1-(x-1)/2] = 1/(3-x)
收敛域 -1 < (x-1)/2 < 1, -2 < x-1 < 2, -1 < x < 3.
S(x) = ∫<-1, x> dt/(3-t) + S(-1) = 2ln2 - ln(3-x), -1 < x < 3.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询