高数:设u=f(ξ,η),其中ξ=e∧xcosy,η=e∧xsiny,求二阶偏导数uxx与uyy 20
高数:设u=f(ξ,η),其中ξ=e∧xcosy,η=e∧xsiny,求二阶偏导数uxx与uyy如图3,麻烦按步骤写出结果,谢谢!...
高数:设u=f(ξ,η),其中ξ=e∧xcosy,η=e∧xsiny,求二阶偏导数uxx与uyy如图3,麻烦按步骤写出结果,谢谢!
展开
1个回答
展开全部
∂ξ/∂x=(e^x)cosy , ∂η/∂x=(e^x)siny
∂ξ/∂y= -(e^x)siny , ∂η/∂x=(e^x)cosy
∂u/∂x
=∂u/∂ξ * ∂ξ/∂x + ∂u/∂η * ∂η/∂x
= f1(e^x)cosy + f2(e^x)siny
∂²u/∂x²
=(∂/∂x)(∂u/∂x)
=(∂/∂x)(f1(e^x)cosy) + (∂/∂x)(f2(e^x)siny)
=(∂f1/∂x)(e^x)cosy+f1 * ∂[(e^x)cosy]/∂x + (∂f2/∂x)(e^x)siny + f2 *∂[(e^x)siny]/∂x
=f11(e^x)cosy + f1(e^x)cosy + f21(e^x)siny + f2(e^x)siny
∂u/∂y
=∂u/∂ξ * ∂ξ/∂y + ∂u/∂η * ∂η/∂y
= -f1(e^x)siny + f2(e^x)cosy
∂²u/∂y²
=(∂/∂y)(∂u/∂y)
=(∂/∂y)(-f1(e^x)siny) + (∂/∂y)(f2(e^x)cosy)
=(∂f1/∂y)(-f1(e^x)siny)+f1(e^x) * ∂[-siny]/∂y + (∂f2/∂y)(e^x)cosy + f2 *∂[(e^x)cosy]/∂y
= -f12(e^x)siny - f1(e^x)cosy + f22(e^x)cosy - f2(e^x)siny
∂ξ/∂y= -(e^x)siny , ∂η/∂x=(e^x)cosy
∂u/∂x
=∂u/∂ξ * ∂ξ/∂x + ∂u/∂η * ∂η/∂x
= f1(e^x)cosy + f2(e^x)siny
∂²u/∂x²
=(∂/∂x)(∂u/∂x)
=(∂/∂x)(f1(e^x)cosy) + (∂/∂x)(f2(e^x)siny)
=(∂f1/∂x)(e^x)cosy+f1 * ∂[(e^x)cosy]/∂x + (∂f2/∂x)(e^x)siny + f2 *∂[(e^x)siny]/∂x
=f11(e^x)cosy + f1(e^x)cosy + f21(e^x)siny + f2(e^x)siny
∂u/∂y
=∂u/∂ξ * ∂ξ/∂y + ∂u/∂η * ∂η/∂y
= -f1(e^x)siny + f2(e^x)cosy
∂²u/∂y²
=(∂/∂y)(∂u/∂y)
=(∂/∂y)(-f1(e^x)siny) + (∂/∂y)(f2(e^x)cosy)
=(∂f1/∂y)(-f1(e^x)siny)+f1(e^x) * ∂[-siny]/∂y + (∂f2/∂y)(e^x)cosy + f2 *∂[(e^x)cosy]/∂y
= -f12(e^x)siny - f1(e^x)cosy + f22(e^x)cosy - f2(e^x)siny
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询