分解因式:yz(y-z)+zx(z-x)+xy(x-y)
4个回答
展开全部
f(x,y,z) =yz(y-z)+zx(z-x)+xy(x-y)
f(x,x,z) =xz(x-z)+zx(z-x)+x^2.(x-x) =0 => (x-y) is a factor
f(x,y,y) =xy(y-y)+yx(y-x)+xy(x-y)=0 => (y-z) is a factor
f(z,y,z) =yz(y-z)+z^2.(z-z)+zy(z-y)=0 => (z-x) is a factor
=>
yz(y-z)+zx(z-x)+xy(x-y) = k(x-y)(y-z)(z-x)
coef. of y^2.(z-x) => k=-1
ie
yz(y-z)+zx(z-x)+xy(x-y) = -(x-y)(y-z)(z-x)
f(x,x,z) =xz(x-z)+zx(z-x)+x^2.(x-x) =0 => (x-y) is a factor
f(x,y,y) =xy(y-y)+yx(y-x)+xy(x-y)=0 => (y-z) is a factor
f(z,y,z) =yz(y-z)+z^2.(z-z)+zy(z-y)=0 => (z-x) is a factor
=>
yz(y-z)+zx(z-x)+xy(x-y) = k(x-y)(y-z)(z-x)
coef. of y^2.(z-x) => k=-1
ie
yz(y-z)+zx(z-x)+xy(x-y) = -(x-y)(y-z)(z-x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
原式= y²z - yz² + z²x - zx² + xy(x - y)
= z²(x - y) - z(x² - y²) + xy(x - y)
= z²(x - y) - z(x + y)(x - y) + xy(x - y)
= (x - y)(z² - zx - zy + xy)
= (x - y)(z(z - x) - y(z - x))
= (x - y)(z - x)(z - y)
= z²(x - y) - z(x² - y²) + xy(x - y)
= z²(x - y) - z(x + y)(x - y) + xy(x - y)
= (x - y)(z² - zx - zy + xy)
= (x - y)(z(z - x) - y(z - x))
= (x - y)(z - x)(z - y)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分解因式:
yz(y-z)+zx(z-x)+xy(x-y)
=y²z-yz²+xz²-x²z+x²y-xy²
yz(y-z)+zx(z-x)+xy(x-y)
=y²z-yz²+xz²-x²z+x²y-xy²
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
xy(x-y)+yz(y-z)+zx(z-x)
=xy(x-y)+yz(y-z)+zx[-(x-y)-(y-z)]
=(x-y)(xy-xz)+(y-z)(yz-zx)
=(x-y)(y-z)x+(y-z)(y-x)z
=(x-y)(y-z)(x-z)
=xy(x-y)+yz(y-z)+zx[-(x-y)-(y-z)]
=(x-y)(xy-xz)+(y-z)(yz-zx)
=(x-y)(y-z)x+(y-z)(y-x)z
=(x-y)(y-z)(x-z)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询