展开全部
f(x) = (x^2/2)∫<0, x>g(t)dt - x∫<0, x>tg(t)dt + (1/2)∫<0, x>t^2g(t)dt
将 ∫<0, x>g(t)dt 视为 H(x), 则
[(x^2/2)H(x)]' = xH(x) + (x^2/2)H'(x) = xH(x) + (x^2/2)g(x), 依次类推,得
f'(x) = x∫<0, x>g(t)dt + (x^2/2)g(x)
- ∫<0, x>tg(t)dt - x^2g(x) + (1/2)x^2g(x)
= x∫<0, x>g(t)dt - ∫<0, x>tg(t)dt
将 ∫<0, x>g(t)dt 视为 H(x), 则
[(x^2/2)H(x)]' = xH(x) + (x^2/2)H'(x) = xH(x) + (x^2/2)g(x), 依次类推,得
f'(x) = x∫<0, x>g(t)dt + (x^2/2)g(x)
- ∫<0, x>tg(t)dt - x^2g(x) + (1/2)x^2g(x)
= x∫<0, x>g(t)dt - ∫<0, x>tg(t)dt
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询