非齐次线性方程组的解 60

非齐次线性方程组的解这几个什么意思(第二张图),二十七题... 非齐次线性方程组的解这几个什么意思(第二张图),二十七题 展开
 我来答
弃似尽原13
2018-09-26 · TA获得超过2705个赞
知道大有可为答主
回答量:4268
采纳率:86%
帮助的人:216万
展开全部
线性方程组解空间的问题线性方程组分为齐次线性方程和非齐次方程组。一般n元线性方程组的形式是 写成矩阵形式就是AX=B,其中A是系数矩阵(m×n),X与B都是1×m列向量当B=0时,称为齐次线性方程。方程的解存性可以看做是用A的列向量能否表示出列向量B的问题,所以当B=0时,至少有一组解即X=0,称之平凡解;而当A列向量线性无关时,仅有零解;线性相关时就有无数组解,但是解空间(向量生成的空间)的维数就等于X维数与A的秩的差(n-r,r为A的秩);解空间的基称为方程组的基础解系。当B≠0时,称为非齐次线性方程(B=0的齐次方程组称为与之对应的齐次线性方程组)。与齐次方程组不同,它可能没有解,有解当且仅当A的秩等于AB合并组成的增广矩阵的秩,说直白就是A的列向量可以表示出B,或者A的列向量组与增广矩阵的列向量组等价。而且有解时,解向量组的秩也等于X的维数与A的秩的差。齐次方程组的解与非齐次方程组的解关系是:非齐次组的解向量等于齐次组的解+非齐次组的一个特解;也就是说只要求出齐次组的解空间的一组基础解系,比如是α1,α2,……,αs,一个非齐次组的特解比如是X1,,那么非齐次组所有解可以表示为:X=X1+C1α1+C2α2+……+Csα,C1,……,Cs为任意常数。所以求非齐次组的通解只需求出其一个特解,再求出对应的齐次组的基础解系即可。区别是:齐次组的解可以形成线性空间(不空,至少有0向量,关于线性运算封闭);非齐次组的解不能形成线性空间,因为其解向量关于线性运算不封闭:任何齐次组的解得线性组合还是齐次组的解,但是非齐次组的任意两个解其组合一般不再是方程组的解(除非系数之和为1)而任意两个非齐次组的解的差变为对应的齐次组的解。注意到这一点,就知道,齐次组有基础解系,而非齐次只有通解,不能称为基础解系,因这些解不能生成解空间(线性运算不封闭)。
追问
智障?
爆肝的动漫姬
2019-09-09 · TA获得超过1629个赞
知道小有建树答主
回答量:3926
采纳率:86%
帮助的人:210万
展开全部

非齐次线性方程组求通解

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式