大学数学,有关导数证明不等式,求助! 50

 我来答
励修聚6
2019-12-07 · TA获得超过2719个赞
知道大有可为答主
回答量:3491
采纳率:72%
帮助的人:328万
展开全部
不是的。只求到一阶导并不能说明一阶导大于零,必须要证明一阶导数单调递增(或递减),同时结合某一点的一阶导,才能说明在一个区间内导数大于零。
不知道这么说你能不能理解,就是已知一点值+单调性,则可证范围,缺少一个条件是不完整的。

追问:

解析上面写的,f'(x)的表达式已经可以判断出x大于1时它的值大于0了啊,而且解析里f'(x)的表达式和f''(x)的差不多啊,为什么f''(x)可以判断出大于0,而f'(x)就不行呢?
追答:

f'(x)和f”(x)形式并不一样。因为e^(x-1)相当于一个基本函数e^x的形式,所以已知是单调递增的,可以直接说明x>1时e^(x-1)>1;但是e^(x-1)-x并不是基本函数的形式,它的单调性必须经过证明
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式