2个回答
展开全部
、 能熟练地求函数定义域;会求函数的值域。
2、理解函数的简单性质,知道它们的几何特点。
3、 牢记常函数、幂函数、指数函数、对数函数、三角函数、反三角函数等六类基本初等函数的表达式,知道它们的定义域、值域、性质及图形特点。其中
⑴. 对于对数函数不仅要熟记它的运算性质,还能熟练应用它与指数函数 互为反函数的关系,能熟练将幂指函数作如下代数运算:
⑵.对于常用的四个反三角函数,不仅要熟习它们的定义域、值域及简单性质,还要熟记它们在特殊点的函数值.
4、 掌握复合函数,初等函数的概念,能熟练地分解复合函数为简单函数的组合。
5、 知道分段函数,隐函数的概念。
. 三.例题选解
例1. 试分析下列函数为哪几个简单函数(基本初等函或基本初等函数的线性函数)复合而成的?
⑴.
⑵.
分析:分解一个复合函数的复合过程应由外层向里层进行,每一步的中间变量都必须是基本初等函数或其线性函数(即简单函数)。
解:
⑴.⑵.
例2.的定义域、值域各是什么?=?
答:
是
的反函数,根据反函数的定义域是原来函数的值域,反函数的值域是原来函数的定义域,可知的定义域是,值域为.
四.练习题及参考答案
1.
则f(x)定义域为 ,值域为
f(1) = ; .
2.
则f(x)定义域为 ,值域为
f(1) = ; .
3.分解下列函数为简单函数的复合:
⑴.
⑵.
答案:
1.(-∞ +∞), ,
2.
.3. ⑴.
⑵.
自我复习:习题一.(A)55.⑴、⑵、⑶;
习题一.(B).11.
第二章 极限与连续
一.本章重点
极限的计算;函数的连续及间断的判定;初等函数的连续性。
二.复习要求
1.了解变量极限的概念,掌握函数f(x)在x0点有极限的充要条件是:函数在x0点的左右极限都存在且相等。
2、理解函数的简单性质,知道它们的几何特点。
3、 牢记常函数、幂函数、指数函数、对数函数、三角函数、反三角函数等六类基本初等函数的表达式,知道它们的定义域、值域、性质及图形特点。其中
⑴. 对于对数函数不仅要熟记它的运算性质,还能熟练应用它与指数函数 互为反函数的关系,能熟练将幂指函数作如下代数运算:
⑵.对于常用的四个反三角函数,不仅要熟习它们的定义域、值域及简单性质,还要熟记它们在特殊点的函数值.
4、 掌握复合函数,初等函数的概念,能熟练地分解复合函数为简单函数的组合。
5、 知道分段函数,隐函数的概念。
. 三.例题选解
例1. 试分析下列函数为哪几个简单函数(基本初等函或基本初等函数的线性函数)复合而成的?
⑴.
⑵.
分析:分解一个复合函数的复合过程应由外层向里层进行,每一步的中间变量都必须是基本初等函数或其线性函数(即简单函数)。
解:
⑴.⑵.
例2.的定义域、值域各是什么?=?
答:
是
的反函数,根据反函数的定义域是原来函数的值域,反函数的值域是原来函数的定义域,可知的定义域是,值域为.
四.练习题及参考答案
1.
则f(x)定义域为 ,值域为
f(1) = ; .
2.
则f(x)定义域为 ,值域为
f(1) = ; .
3.分解下列函数为简单函数的复合:
⑴.
⑵.
答案:
1.(-∞ +∞), ,
2.
.3. ⑴.
⑵.
自我复习:习题一.(A)55.⑴、⑵、⑶;
习题一.(B).11.
第二章 极限与连续
一.本章重点
极限的计算;函数的连续及间断的判定;初等函数的连续性。
二.复习要求
1.了解变量极限的概念,掌握函数f(x)在x0点有极限的充要条件是:函数在x0点的左右极限都存在且相等。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |