如何计算四阶行列式?
2021-01-25 广告
举例说明四阶行列式的计算方法:
行列式的值=所有来自不同行不同列的元素的乘积的和。
每一项都是不同行不同列元素的乘积。因为a11和a23占用了1,2行和1,3列,所以剩下的两个元素来自3,4行的2,4列;
1、第三行取第二列,即a32,则第四行只能取第四列,即a44,也就是a11a23a32a44;
2、第三行取第四列,即a34,则第四行只能取第二列,即a42,也就是a11a23a34a42;
3、每一项的正负号取决于逆序数,对于a11a23a32a44,逆序数取决于【1 3 2 4】,逆序数为1,所以取负号
4、对于a11a23a34a42,逆序数取决于【1 3 4 2】,逆序数为2,所以取正号
注意事项:
四阶行列式的性质
1、在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。
2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
3、四阶行列式由排成n阶方阵形式的n²个数aij(i,j=1,2,...,n)确定的一个数,其值为n。
4、四阶行列式中k1,k2,...,kn是将序列1,2,...,n的元素次序交换k次所得到的一个序列,Σ号表示对k1,k2,...,kn取遍1,2,...,n的一切排列求和,那么数D称为n阶方阵相应的行列式。
四阶行列式的计算首先要降低阶数。对于n阶行列式A,可以采用按照某一行或者某一列展开的办法降阶,一般都是第一行或者第一列。
首先令原行列式为|A|则,第2行倍数减掉其他各行。
0 -13 -4 0
1 5 2 1
0 -16 -5 -4
0 -19 -6 -2
第一行倍数减掉后两行
0 -13 -4 0
1 5 2 1
0 0 a *(-16/13 倍)
0 0 * b(-19/13 倍)
下面|A|=-|1 5 2 1 |=13ab=-6
|0 -13 -4 0 |
|0 0 a * |
|0 0 * b |
|A|=2*(-1)^(1+1)A11+(-3)*(-1)^(1+2)*A12+2*(-1)^(1+4)A14
=2*19+3*(-14)-2*(1)=-6(利用代数余子式)
扩展资料
使用行列式的性质计算:
1、行列式A中某行(或列)用同一数k乘,其结果等于kA。
2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
3、若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
4、行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
参考资料:百度百科—行列式
四阶行列式怎么求,四阶行列式到底应该怎么解