求函数的单调区间和极值
展开全部
解,f(x)=ⅹ^2/3-2/3x
则f′(x)=2/3x^(-1/3)-2/3
令f′(x)=0,则1/x^(1/3)-1=0
当x≥1,1/x^(1/3)-1≤0
x∈(0,1),f′(x)>0
x<0,f′(x)<0
则f(x)在(-00,0)↓[1,+00)↓
在(0,1)↑
则f(0)=0,最小极值点。
f(1)=1/3,最大极值点。
则f′(x)=2/3x^(-1/3)-2/3
令f′(x)=0,则1/x^(1/3)-1=0
当x≥1,1/x^(1/3)-1≤0
x∈(0,1),f′(x)>0
x<0,f′(x)<0
则f(x)在(-00,0)↓[1,+00)↓
在(0,1)↑
则f(0)=0,最小极值点。
f(1)=1/3,最大极值点。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |