求微分方程 y'=y/(x+y)+(x+y)^(3/2)的通解 5
展开全部
设p=y'
则y"=dp/dx=dp/dy* dy/dx=pdp/dy
方程化为:pdp/dy=p^3+p
dp/dy=p^2+1
dp/(p^2+1)=dy
arctanp=y+c
p=tan(y+c)
dy/dx=tan(y+c)
dy/tan(y+c)=dx
cos(y+c)dy/sin(y+c)=dx
d(sin(y+c))/sin(y+c)=dx
ln[sin(y+c)]=x+c1
sin(y+c)=c2e^x
则y"=dp/dx=dp/dy* dy/dx=pdp/dy
方程化为:pdp/dy=p^3+p
dp/dy=p^2+1
dp/(p^2+1)=dy
arctanp=y+c
p=tan(y+c)
dy/dx=tan(y+c)
dy/tan(y+c)=dx
cos(y+c)dy/sin(y+c)=dx
d(sin(y+c))/sin(y+c)=dx
ln[sin(y+c)]=x+c1
sin(y+c)=c2e^x
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询