求定积分,如图
4个回答
展开全部
∫(0->1) x^3.√(1+4x^2) dx
=(1/12) ∫(0->1) x^2. d(1+4x^2)^(3/2)
=(1/12) [x^2. (1+4x^2)^(3/2)]|(0->1) -(1/6) ∫(0->1) x(1+4x^2)^(3/2) dx
=(1/12).5^(3/2) -(1/120)[ (1+4x^2)^(5/2)]|(0->1)
=(1/12).5^(3/2) -(1/120)5^(5/2) +1/120
=(5/12)√5 - (5/24)√5 +1/120
= (5/24)√5 +1/120
=(1/12) ∫(0->1) x^2. d(1+4x^2)^(3/2)
=(1/12) [x^2. (1+4x^2)^(3/2)]|(0->1) -(1/6) ∫(0->1) x(1+4x^2)^(3/2) dx
=(1/12).5^(3/2) -(1/120)[ (1+4x^2)^(5/2)]|(0->1)
=(1/12).5^(3/2) -(1/120)5^(5/2) +1/120
=(5/12)√5 - (5/24)√5 +1/120
= (5/24)√5 +1/120
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
原积分=1/2 ∫(0, 1)x^2(1+4x^2)^(1/2)d(x^2)
=1/2 1/16 ∫(0, 1)[(1+4x^2)-1](1+4x^2)^(1/2)d(1+4x^2)
=1/32 ∫(0, 1)[(1+4x^2)^(3/2)-(1+4x^2)^(1/2)]d(1+4x^2)
=1/32 [2/5 (1+4x^2)^(5/2)-2/3 (1+4x^(3/2)]|(0, 1)
=1/32{2/5 * [5^(5/2)-1]-2/3 * [5^(3/2)-1]
=5√5(1/16-1/48)-1/80+1/48
=5√5/24-1/120.
=1/2 1/16 ∫(0, 1)[(1+4x^2)-1](1+4x^2)^(1/2)d(1+4x^2)
=1/32 ∫(0, 1)[(1+4x^2)^(3/2)-(1+4x^2)^(1/2)]d(1+4x^2)
=1/32 [2/5 (1+4x^2)^(5/2)-2/3 (1+4x^(3/2)]|(0, 1)
=1/32{2/5 * [5^(5/2)-1]-2/3 * [5^(3/2)-1]
=5√5(1/16-1/48)-1/80+1/48
=5√5/24-1/120.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |