高等数学,第二题怎么做?要详细步骤 100
2个回答
展开全部
2. x = a(cost)^3, y = a(sint)^3
dx/dt = -3asint(cost)^2, dy/dt = 3acost(sint)^2
y' = dy/dx = (dy/dt)/(dx/dt) = -tant
y'' = dy'/dx = (dy'/dt)/(dx/dt) = -(dtant/dt)/(dx/dt)
= -(sect)^2/[-3asint(cost)^2] = (sect)^4/(3asint)
曲率 K = |y''|/(1+y'^2)^(3/2) = |(sect)^4/(3asint)|/[1+(tant)^2]^(3/2)
= |sect/(3asint)| = 1/|3asintcost)| = 2/|3asin2t|
在 t = t0 处, K = 2/|3asin2t0|
dx/dt = -3asint(cost)^2, dy/dt = 3acost(sint)^2
y' = dy/dx = (dy/dt)/(dx/dt) = -tant
y'' = dy'/dx = (dy'/dt)/(dx/dt) = -(dtant/dt)/(dx/dt)
= -(sect)^2/[-3asint(cost)^2] = (sect)^4/(3asint)
曲率 K = |y''|/(1+y'^2)^(3/2) = |(sect)^4/(3asint)|/[1+(tant)^2]^(3/2)
= |sect/(3asint)| = 1/|3asintcost)| = 2/|3asin2t|
在 t = t0 处, K = 2/|3asin2t0|
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询