帮忙解道题 ,已知x+1/y=y+1/z=z+1/x ,证明x²+y²+z²=1
展开全部
∵x+1/y=y+1/z
∴x-y=1/z-1/y=(y-z)/yz......(1)
∵y+1/z=z+1/x
∴y-z=1/x-1/z=(z-x)/xz......(2)
∵x+1/y=z+1/x
∴z-x=1/y-1/x=(x-y)/(xy)......(3)
(1)*(2)*(3)得:
(x-y)(y-z)(z-x)
=
(x-y)(y-z)(z-x)/(x^2y^2z^2)......(4)
∵x,y,z
为互不相等的非零实数
∴(4)式两边除以(x-y)(y-z)(z-x)
得:
1
=
1/(x^2y^2z^2)
x^2y^2z^2
=
1
∴x-y=1/z-1/y=(y-z)/yz......(1)
∵y+1/z=z+1/x
∴y-z=1/x-1/z=(z-x)/xz......(2)
∵x+1/y=z+1/x
∴z-x=1/y-1/x=(x-y)/(xy)......(3)
(1)*(2)*(3)得:
(x-y)(y-z)(z-x)
=
(x-y)(y-z)(z-x)/(x^2y^2z^2)......(4)
∵x,y,z
为互不相等的非零实数
∴(4)式两边除以(x-y)(y-z)(z-x)
得:
1
=
1/(x^2y^2z^2)
x^2y^2z^2
=
1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询