这个数学题怎么做?
1个回答
展开全部
解:设隔出大、小房间分别为x间、y间,收益为f元,则
f=200x
150y.
其中x、y满足
如图4所示,由图解法易得f=200x
150y过点A(23/7,63/7)时,目标函数f取得最大值。
但x、y必须是整数,还需在可行区域内找出使目标函数f取得最大值的整点。
显然目标函数f取得最大值的整点一定是分布在可行区域的右上侧,则利用枚举法即可求出整点最优解。
这些整点有:(0,12),(1,10),(2,9),(3,8),(4,6),(5,5),(6,3),(7,1),(8,0),分别代入f=200x
150y,逐一验证,可得取整点(0,12)或(3,8)时,fmax=200×0
150×12=200×3
150×8=1800(元)。
所以要获得最大收益,有两种方案:
Ⅰ.只隔出小房间12间;
Ⅱ.隔出大房间3间,小房间8间。
最大收益为1800元。
f=200x
150y.
其中x、y满足
如图4所示,由图解法易得f=200x
150y过点A(23/7,63/7)时,目标函数f取得最大值。
但x、y必须是整数,还需在可行区域内找出使目标函数f取得最大值的整点。
显然目标函数f取得最大值的整点一定是分布在可行区域的右上侧,则利用枚举法即可求出整点最优解。
这些整点有:(0,12),(1,10),(2,9),(3,8),(4,6),(5,5),(6,3),(7,1),(8,0),分别代入f=200x
150y,逐一验证,可得取整点(0,12)或(3,8)时,fmax=200×0
150×12=200×3
150×8=1800(元)。
所以要获得最大收益,有两种方案:
Ⅰ.只隔出小房间12间;
Ⅱ.隔出大房间3间,小房间8间。
最大收益为1800元。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |