求通项公式1,2,3,5,8,13,21……

 我来答
宗温兆雁
2020-01-16 · TA获得超过3.7万个赞
知道小有建树答主
回答量:1.3万
采纳率:30%
帮助的人:995万
展开全部
著名的斐波那契数列:1,1,2,3,5,8,13,21……
你的数列是它的一部分
请看斐波那契数列的求法:
如果设F(n)为该数列的第n项毕稿戚(n∈N+)。那么这句话可以写成如下形式:
F(1)=F(2)=1,F(n)=F(n-1)+F(n-2)
(n≥3)
显然这是一个线性递推数列。
通项公式的推导方法一:利用特征方程
线性递推数列的特征方敬悔程为:
X^2=X+1
解得
X1=(1+√5)/2,
X2=(1-√5)/2.
则F(n)=C1*X1^n
+
C2*X2^n
∵F(1)=F(2)=1
∴C1*X1
+
C2*X2
C1*X1^2
+
C2*X2^2
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n
-
[(1-√5)/2]^n}【√5表示根号5】
通项公式的推导方法二:普通方法手陵
设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1,
-rs=1
n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]
将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)
那么:
F(n)=s^(n-1)+r*F(n-1)
=
s^(n-1)
+
r*s^(n-2)
+
r^2*F(n-2)
=
s^(n-1)
+
r*s^(n-2)
+
r^2*s^(n-3)
+
r^3*F(n-3)
……
=
s^(n-1)
+
r*s^(n-2)
+
r^2*s^(n-3)
+……+
r^(n-2)*s
+
r^(n-1)*F(1)
=
s^(n-1)
+
r*s^(n-2)
+
r^2*s^(n-3)
+……+
r^(n-2)*s
+
r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n
-
r^n)/(s-r)
r+s=1,
-rs=1的一解为
s=(1+√5)/2,
r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n
-
[(1-√5)/2]^n}
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式