数列的累加法后面怎么加
展开全部
如果数列的通项满足an-a(n-1)=F(n)的话,一般可以采用此法.
举例:若数列{an}满足a1=1
,a(n+1)=an+2^n
求数列{an}的通项公式
因为a(n+1)-an=2^n
所以有:
a2-a1=2
a3-a2=2²
a4-a3=2³
.
an-a(n-1)=2^(n-1)
把以上各式累加得(这就是累加法)
an-a1=2+2²+2³+.2^(n-1)
an-1=2+2²+2³+.2^(n-1)
an=1+2+2²+2³+.2^(n-1)
an=2^n-1
验证当n=1时,a1=2-1=1适合an=2^n-1
所以数列{an}的通项公式an=2^n-1
注意:用累加法求通项公式时一般要n=1时的情况.
举例:若数列{an}满足a1=1
,a(n+1)=an+2^n
求数列{an}的通项公式
因为a(n+1)-an=2^n
所以有:
a2-a1=2
a3-a2=2²
a4-a3=2³
.
an-a(n-1)=2^(n-1)
把以上各式累加得(这就是累加法)
an-a1=2+2²+2³+.2^(n-1)
an-1=2+2²+2³+.2^(n-1)
an=1+2+2²+2³+.2^(n-1)
an=2^n-1
验证当n=1时,a1=2-1=1适合an=2^n-1
所以数列{an}的通项公式an=2^n-1
注意:用累加法求通项公式时一般要n=1时的情况.
展开全部
1.
累加法适用于形如a(n+1)=an+f(n)形式的递推数列或其变式、其中f(n)是关于n的函数,当然这里前提是f(n)的前n项和便于求出。
2.
一阶线性递推数列主要有如下几种形式:1.这类递推数列可通过累加法而求得其通项公式(数列{f(n)}可求前n项和).当为常数时,通过累加法可求得等差数列的通项公式.而当为等差数列时,则为二阶等差数列,其通项公式应当为形式,注意与等差数列求和公式一般形式的区别,后者是,其常数项一定为0.
3.
2这类递推数列可通过累乘法而求得其通项公式(数列{g(n)}可求前n项积).当为常数时,用累乘法可求得等比数列的通项公式.
累加法适用于形如a(n+1)=an+f(n)形式的递推数列或其变式、其中f(n)是关于n的函数,当然这里前提是f(n)的前n项和便于求出。
2.
一阶线性递推数列主要有如下几种形式:1.这类递推数列可通过累加法而求得其通项公式(数列{f(n)}可求前n项和).当为常数时,通过累加法可求得等差数列的通项公式.而当为等差数列时,则为二阶等差数列,其通项公式应当为形式,注意与等差数列求和公式一般形式的区别,后者是,其常数项一定为0.
3.
2这类递推数列可通过累乘法而求得其通项公式(数列{g(n)}可求前n项积).当为常数时,用累乘法可求得等比数列的通项公式.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询