高中数学不等式 有扩展 有公式 的总结
展开全部
1、调和平均数:Hn=n/(1/a1+1/a2+...+1/an)
2、几何平均数:Gn=(a1a2...an)^(1/n)
3、算术平均数:An=(a1+a2+...+an)/n
4、平方平均数:Qn=√
[(a1^2+a2^2+...+an^2)/n]
这四种平均数满足Hn≤Gn≤An≤Qn
对于两个正数a、b:(√a^2+b^2)/2≥(a+b)/2≥(ab)^(1/n)≥2(1/a+1/b)
2、几何平均数:Gn=(a1a2...an)^(1/n)
3、算术平均数:An=(a1+a2+...+an)/n
4、平方平均数:Qn=√
[(a1^2+a2^2+...+an^2)/n]
这四种平均数满足Hn≤Gn≤An≤Qn
对于两个正数a、b:(√a^2+b^2)/2≥(a+b)/2≥(ab)^(1/n)≥2(1/a+1/b)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询