如何用向量证明三角形三条中线交于一点
2个回答
展开全部
假设CF与BE交于G点
现在需要证明的是:G点位于AD上:
根据梅氏定理:(CE/EA)(AB/BF)(FG/GC)=1
即:1*2(FG/GC)=1
即:FG/GC=1/2
故:CG=2CF/3
CF=(CA+CB)/2
故:CG=(CA+CB)/3
故:GD=CD-CG=CB/2-CG
=CB/2-(CA+CB)/3
=-CA/3+CB/6
=(-1/6)(2CA-CB)
AG=CG-CA=(CA+CB)/3-CA
=-2CA/3+CB/3
=(-1/3)(2CA-CB)
即:AG=2GD
即:AG、GD共线
即:A、G、D三点共线
即原结论得证
三角形的垂心定理:在三角形ABC中,求证:它的三条高交于一点。
证明:如图:作BE⊥AC于点E,CF⊥AB于点F,且BE交CF于点H,连接AH并延长交BC于点D.现在我们只要证明AD⊥BC即可。
因为CF⊥AB,BE所以 四边形BFEC为圆内接四边形.四边形AFHE为圆内接四边形。
以∠FAH=∠FEH=∠FEB=∠FCB由∠FAH=∠FCB得四边形AFDC为圆内接四边形所以∠AFC=∠ADC=90°即AD⊥BC。
展开全部
AD、BE、CF是△ABC的三条中线,用向量法求证:AD、BE、CF共点。
[证明]
令BE、CF相交于O,且BO=mOE、CO=nOF,其中m、n为非零实数。则:
向量BO=m向量OE、向量CO=n向量OF。
∴向量BC=向量OC-向量OB=向量BO-向量CO=m向量OE-n向量OF,
向量FE=向量OE-向量OF。
显然有:向量BC=2向量FE,∴m向量OE-n向量OF=2(向量OE-向量OF),
∴(m-2)向量OE=(n-2)向量OF,而向量OE、向量OF不共线,∴m-2=n-2=0,
∴m=n=2,∴BO=2OE、CO=2OF。
令AD、BE相交于G,利用上述结论,则有:BG=2GE,又BO=2OE,且O、G都在线段BE上,
∴O、G重合,∴AD、BE、CF共点。
[证明]
令BE、CF相交于O,且BO=mOE、CO=nOF,其中m、n为非零实数。则:
向量BO=m向量OE、向量CO=n向量OF。
∴向量BC=向量OC-向量OB=向量BO-向量CO=m向量OE-n向量OF,
向量FE=向量OE-向量OF。
显然有:向量BC=2向量FE,∴m向量OE-n向量OF=2(向量OE-向量OF),
∴(m-2)向量OE=(n-2)向量OF,而向量OE、向量OF不共线,∴m-2=n-2=0,
∴m=n=2,∴BO=2OE、CO=2OF。
令AD、BE相交于G,利用上述结论,则有:BG=2GE,又BO=2OE,且O、G都在线段BE上,
∴O、G重合,∴AD、BE、CF共点。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询