x∈R,f(x)满足f(xy)=f(x)+f(y),则f(x)的奇偶性是?为什么?

 我来答
库珠辟曼冬
2019-11-14 · TA获得超过3623个赞
知道大有可为答主
回答量:3234
采纳率:29%
帮助的人:261万
展开全部
当x=-1,y=-1,f(-1*-1)=f(1)=f(-1)+f(-1)=0
所以f(-1)=0
当x=1,y=1,f(1*1)=f(1)+f(1)
所以f(1)=0
当x=x,y=-1,f(-1*x)=f(-x)=f(-1)+f(x)=f(x)
所以为偶函数
另外,可以用反证法,假如是偶函数是,。。。。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式