关于求极限 能不能拆 拆了再说和导数定义表达式必须已知可导才可拆的问题
2.为什么导数定义表达式如果想拆,必须已知导数存在可导,如果问有没有导数,是不可拆的呢
3.这个题老师说洛必达是一个错误做法因为邻域可导性未知,没理解这一块洛必达的错因,如果洛必达那写法应该是什么样子 展开
在求分数极限的时候,分子是加减式,分母是乘除式,那么只要能保证各部分极限存在即可拆开运算。
例如:lim(A+B)/C=a(x→x0,C≠0),如果想拆成limA/C+limB/C=a来运算,那么必须要保证limA/C,limB/C两个极限存在才可以。如果两个极限不存在,那么不可以进行拆分。
题目中指明f(x,y)在(a,b)处关于x和y的偏导数均存在,那么对于后面题目中的极限,无疑拆分出来两个部分的极限都存在,那么就可以去进行拆分运算。
导数定义表达式想进行拆分,已知函数可导其实是保证极限的存在。如果导数不存在,那么函数在该点的极限可能不存在(无定义或左右极限不等),那么是不可以贸然拆分的。
老师讲到无法用洛必达法则来解决这道题是因为邻域可导性未知,的确是这样。
题目中只提到f(x,y)在(a,b)处关于x、y的偏导数存在,并没有说明f(x,y)在以(a,b)为中心的去心邻域内偏导数存在(即可导),那么就不符合洛必达法则的使用条件,因此无法使用洛必达法则去解决这个问题。
极限想求解必须保证拆分出的每一个极限存在,否则不可拆分(若是判断极限存在性如果拆分的极限中有一个极限不存在,那么该极限一定不存在)。而导数(偏导数)存在的意义就是导数定义式的那个极限存在。
非常感谢大佬,码了这么多字,解释的非常清晰,请问可以加您wx么,有偿也可以,在准备考研数一,有问题我问您,可以商量一下价格
那个您的第2个回答,极限存在与否指的是导数定义那个极限吧。
对呀,就是导数最原始定义的那个极限。
WX用得少,也不怎么加人的,这个实在抱歉。数一加油啊,毕竟是最难的(笑.jpg)。码了这么多字其实主要说的就是一点,求极限想要拆分必须保证各部分极限存在。
最后祝考研顺利,金榜题名!!