高等数学导数的定义

 我来答
帐号已注销
2020-10-23 · TA获得超过3000个赞
知道小有建树答主
回答量:3982
采纳率:100%
帮助的人:89.3万
展开全部
导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。

中文名
导数
外文名
Derivative
提出者
牛顿、莱布尼茨
提出时间
17世纪
应用领域
数学(微积分学)、物理学
限时折扣
高中数学从入门到精通:导数(高考数学压轴题从入门到精通)
共82集
2.9万热度

限时折扣
导数中“参数分类”的四大标准(含讲义)
共20集
4392热度
快速
导航
定义

公式

导数与函数的性质

导数种别

应用
历史沿革
起源
大约在1629年,法国数学家费马研究了作曲线的切线和求函数极值的方法;1637年左右,他写一篇手稿《求最大值与最小值的方法》。在作切线时,他构造了差分f(A+E)-f(A),发现的因子E就是我们所说的导数f'(A)。[1]
发展
17世纪生产力的发展推动了自然科学和技术的发展,在前人创造性研究的基础上,大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”,他称变量为流量,称变量的变化率为流数,相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》,流数理论的实质概括为:他的重点在于一个变量的函数而不在于多变量的方程;在于自变量的变化与函数的变化的比的构成;最在于决定这个比当变化趋于零时的极限。[1]
成熟
1750年达朗贝尔在为法国科学家院出版的《百科全书》第四版写的“微分”条目中提出了关于导数的一种观点,可以用现代符号简单表示: 。
1823年,柯西在他的《无穷小分析概论》中定义导数:如果函数y=f(x)在变量x的两个给定的界限之间保持连续,并且我们为这样的变量指定一个包含在这两个不同界限之间的值,那么是使变量得到一个无穷小增量。19世纪60年代以后,魏尔斯特拉斯创造了ε-δ语言,对微积分中出现的各种类型的极限重加表达。
微积分学理论基础,大体可以分为两个部分。一个是实无限理论,即无限是一个具体的东西,一种真实的存在;另一种是潜无限理论,指一种意识形态上的过程,比如无限接近。
就数学历史来看,两种理论都有一定的道理,实无限就使用了150年。
不丿言

2020-10-23 · TA获得超过1.3万个赞
知道大有可为答主
回答量:7.2万
采纳率:47%
帮助的人:2567万
展开全部
高等数学导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
春谷秋4U
2020-12-29
知道答主
回答量:9
采纳率:0%
帮助的人:4591
展开全部
导数是微积分也是高数当中很重要的一个部分,不过很遗憾的是,和导数相关的部分很多同学都是高中的时候学的。经过了这么多年,可能都差不多还给老师了。所以今天的文章就一起来温习一下导数的相关知识,捡一捡之前忘记的内容。
导数是微积分也是高数当中很重要的一个部分,不过很遗憾的是,和导数相关的部分很多同学都是高中的时候学的。经过了这么多年,可能都差不多还给老师了。所以今天的文章就一起来温习一下导数的相关知识,捡一捡之前忘记的内容。导数是微积分也是高数当中很重要的一个部分,不过很遗憾的是,和导数相关的部分很多同学都是高中的时候学的。经过了这么多年,可能都差不多还给老师了。所以今天的文章就一起来温习一下导数的相关知识,捡一捡之前忘记的内容。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式