cos2Θ/sin(Θ+π/4)=_√2/2,则sinΘ-cosΘ的值为
1个回答
展开全部
cos2Θ/sin(Θ+π/4)=-√2/2
cos2Θ = --√2/2sin(Θ+π/4)
cos2Θ = --√2/2(sinΘcosπ/4+cosΘsinπ/4)
cos2Θ = --√2/2【(√2/2)sinΘ+(√2/2)cosΘ】
cos²Θ-sin²Θ = -(1/2)(sinΘ+cosΘ)
(cosΘ-sinΘ)(sinΘ+cosΘ)+(1/2)(sinΘ+cosΘ)=0
(cosΘ-sinΘ+1/2)(sinΘ+cosΘ)=0
cosΘ-sinΘ = -1/2
cos2Θ = --√2/2sin(Θ+π/4)
cos2Θ = --√2/2(sinΘcosπ/4+cosΘsinπ/4)
cos2Θ = --√2/2【(√2/2)sinΘ+(√2/2)cosΘ】
cos²Θ-sin²Θ = -(1/2)(sinΘ+cosΘ)
(cosΘ-sinΘ)(sinΘ+cosΘ)+(1/2)(sinΘ+cosΘ)=0
(cosΘ-sinΘ+1/2)(sinΘ+cosΘ)=0
cosΘ-sinΘ = -1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询