求点M(p,p)到抛物线y^2=2px(p>0)的最短距离?
1个回答
展开全部
求点M(p,p)到抛物线y^2=2px(p>0)的最短距离?
设N(y²/2p,y)是抛物线上的任意一点,若MN=d,那么
d²=(p-y²/2p)²+(p-y)²=p²-y²+(y⁴/4p²)+p²-2py+y²=2p²-2py+(y⁴/4p²).(1)
两边对y取导数:
2dd′=-2p+y³/p²,令d′=(1/2d)(-2p+y³/p²)=0,得y³=2p³,故得驻点y=[2^(1/3)]p
代入(1)式即得最短距离dmin:
dmin=√{2p²-[2^(2/3)]p²+p²/[4^(1/3)]}=p√[2-4^(1/3)+1/4^(1/3)]=p√(2-1.4142+0.7071)
=p√1.2929=1.1371p
设N(y²/2p,y)是抛物线上的任意一点,若MN=d,那么
d²=(p-y²/2p)²+(p-y)²=p²-y²+(y⁴/4p²)+p²-2py+y²=2p²-2py+(y⁴/4p²).(1)
两边对y取导数:
2dd′=-2p+y³/p²,令d′=(1/2d)(-2p+y³/p²)=0,得y³=2p³,故得驻点y=[2^(1/3)]p
代入(1)式即得最短距离dmin:
dmin=√{2p²-[2^(2/3)]p²+p²/[4^(1/3)]}=p√[2-4^(1/3)+1/4^(1/3)]=p√(2-1.4142+0.7071)
=p√1.2929=1.1371p
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询