请教一道题目,感谢感谢!
1个回答
展开全部
f(x)
= ln|x|/(x^2-3x+2)
= ln|x|/[(x-1)(x-2)]
x=0, x=2 无穷间断点
lim(x->1 ) f(x)
=lim(x->1) ln|x|/[(x-1)(x-2)]
=lim(x->1) lnx/[(x-1)(x-2)]
=lim(x->1) ln(1-(1-x))/[(x-1)(x-2)]
=lim(x->1) -(1-x)/[(x-1)(x-2)]
=lim(x->1) 1/(x-2)
=-1
x=1 , 可去间断点
= ln|x|/(x^2-3x+2)
= ln|x|/[(x-1)(x-2)]
x=0, x=2 无穷间断点
lim(x->1 ) f(x)
=lim(x->1) ln|x|/[(x-1)(x-2)]
=lim(x->1) lnx/[(x-1)(x-2)]
=lim(x->1) ln(1-(1-x))/[(x-1)(x-2)]
=lim(x->1) -(1-x)/[(x-1)(x-2)]
=lim(x->1) 1/(x-2)
=-1
x=1 , 可去间断点
更多追问追答
追问
谢谢!请问x=2时如何判断啊?
追答
x=2 无穷间断点
lim(x->2) ln|x|/[(x-1)(x-2)] ->∞
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询