两直线垂直斜率关系是什么?
两条直线平行,斜率相等,两条直线垂直,二者斜率相乘就为-1。
两条直线的斜率相等是两条直线平行的充分条件, 即:如果两条直线的斜率相等,那么这两条直线一定平行。两条直线都平行于y轴时,两直线的斜率都不存在。
如果两条直线垂直,那么斜率相乘就为-1。
扩展资料:
解析几何中,要通过点的坐标和直线方程来研究直线通过坐标计算求得,使方程形式上较为简单。如果只用倾斜角一个概念,那么它在实际上相当于反正切函数值arctank,难于直接通过坐标计算求得,并使方程形式变得复杂。
坐标平面内,每一条直线都有唯一的倾斜角,但不是每一条直线都有斜率,倾斜角是90°的直线(即x轴的垂线)没有斜率。在学习中,经常要对直线是否有斜率分情况进行讨论。
当直线L的斜率不存在时,斜截式y=kx+b,当k=0时 y=b。
当直线L的斜率存在时,点斜式y2-y1=k(X2—X1)
当直线L在两坐标轴上存在非零截距时,有截距式X/a+y/b=1
对于任意函数上任意一点,其斜率等于其切线与x轴正方向的夹角,即tanα
斜率计算:ax+by+c=0中,k=-a/b
直线斜率公式:k=(y2-y1)/(x2-x1)
当k>0时,直线与x轴夹角越大,斜率越大;当k<0时,直线与x轴夹角越小,斜率越小。
乘积为-1
1、两条垂直相交直线的斜率相乘积为-1。如果其中一条直线的斜率不存在,则,另一条直线的斜率=0。
2、如果直线与x轴垂直,直角的正切值无穷大,故此直线不存在斜率。
3、当直线L的斜率不存在时,对于一次函数y=kx+b(斜截式),k即该函数图像(直线)的斜率。
扩展资料:
直线斜率公式:
1、斜率计算:ax+by+c=0中,k=-a/b。
2、直线斜率公式:k=(y2-y1)/(x2-x1)。
3、两条垂直相交直线的斜率相乘积为-1:k1*k2=-1。
当k>0时,直线与x轴夹角越大,斜率越大;当k<0时,直线与x轴夹角越小,斜率越小。
4、当直线L的斜率存在时,对于一次函数y=kx+b(斜截式),k即该函数图像(直线)的斜率;
5、当直线L的斜率存在时,点斜式y2—y1=k(X2—X1);
6、当直线L在两坐标轴上存在非零截距时,有截距式X/a+y/b=1。对于任意函数上任意一点,其斜率等于其切线与x轴正方向的夹角,即tanα。
参考资料来源:百度百科—直线的斜率
如果两条直线的斜率都存在。则,它们的斜率之积=-1。
如果其中一条直线的斜率不存在。则,另一条直线的斜率=0。
如果直线与x轴垂直,直角的正切值无穷大,故此直线不存在斜率。 当直线L的斜率存在时,对于一次函数y=kx+b(斜截式),k即该函数图像(直线)的斜率。
扩展资料
首先就是从实际意义看,斜率就是我们所说的坡度,是高度的平均变化率,用坡度来刻划道路的倾斜程度,也就是用坡面的切直高度和水平长度的比,相当于在水平方向移动一千米,在切直方向上升或下降的数值。
其次,从倾斜角的正切值来看;还有就是从向量看,是直线向上方向的向量与x轴方向上的单位向量的夹角;最后是从导数这个视角来再次认识斜率的概念,这里实际上就是直线纵坐标随横坐标的瞬时变化率。
认识斜率概念不仅仅是对今后的学习起着很重要的作用,而且对今后学习的一些数学的重要的解题的方法,也是非常有帮助的。