一道高数题追加50分求解
2021-08-29 · 知道合伙人教育行家
关注
展开全部
e^(-x)/(1+e^x)=1/[e^x (1+e^x)]=1/e^x -1/(1+e^x)=1/e^x -[(1+e^x)-e^x]/(1+e^x)=e^(-x) -1 +e^x/(1+e^x).
最后的第一项、第二项可直接求出原函数,第三项经简单凑微分得一个原函数ln(1+e^x). 然后代入上下限,即可求出最后结果。
最后的第一项、第二项可直接求出原函数,第三项经简单凑微分得一个原函数ln(1+e^x). 然后代入上下限,即可求出最后结果。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫(0->+无穷) e^(-x) /(1+e^x) dx
=∫(0->+无穷) e^(-x) /[1+1/e^(-x) ] dx
=∫(0->+无穷) e^(-2x) /[1+e^(-x) ] dx
=-∫(0->+无穷) e^(-x) /[1+e^(-x) ] d e^(-x)
=-∫(0->+无穷) { 1 - 1 /[1+e^(-x) ] } d e^(-x)
=-[ e^(-x) -ln|1+e^(-x)| ]|(0->+无穷)
=1-ln2
=∫(0->+无穷) e^(-x) /[1+1/e^(-x) ] dx
=∫(0->+无穷) e^(-2x) /[1+e^(-x) ] dx
=-∫(0->+无穷) e^(-x) /[1+e^(-x) ] d e^(-x)
=-∫(0->+无穷) { 1 - 1 /[1+e^(-x) ] } d e^(-x)
=-[ e^(-x) -ln|1+e^(-x)| ]|(0->+无穷)
=1-ln2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫e^(-x)dx/(1+e^x) = -∫de^(-x)/(1+e^x) = -∫e^(-x)de^(-x)/[e^(-x)+1]
= -∫[e^(-x)+1-1]de^(-x)/[e^(-x)+1] = -e^(-x) + ∫d[e^(-x)+1]/[e^(-x)+1]
= -e^(-x) + ln[1+e^(-x)]
代入上下限,得 1 + ln2
= -∫[e^(-x)+1-1]de^(-x)/[e^(-x)+1] = -e^(-x) + ∫d[e^(-x)+1]/[e^(-x)+1]
= -e^(-x) + ln[1+e^(-x)]
代入上下限,得 1 + ln2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询