在△ABC中,三个内角A,B,C的对边分别为a,b,c,求证aˆ2sin2B+bˆ2sin2A=2absinC.
2个回答
展开全部
证明:在△abc中,由正弦定理可得
a
sina
=
b
sinb
=
c
sinc
=2r,
可得
a2sin2b+b2sin2a=2r2(2sin22asin2b+2sin2bsin2a)
=2r2[2(1-cos2a)sin2b+(1-cos2a)sin2a]
=2r2[sin2b+sin2a-(sin2bcos2a+cos2bsin2a)]=2r2[sin2b+sin2a-sin(2a+2b)]
=2r2[2sin(a+b)cos(a-b)-2sin(a+b)cos(a+b)]=4r2sin(a+b)[cos(a-b)-cos(a+b)]
=4r2sin(a+b)[2sinasinb]=8r2sinasinbsinc=2absinc,
故原题得证.
a
sina
=
b
sinb
=
c
sinc
=2r,
可得
a2sin2b+b2sin2a=2r2(2sin22asin2b+2sin2bsin2a)
=2r2[2(1-cos2a)sin2b+(1-cos2a)sin2a]
=2r2[sin2b+sin2a-(sin2bcos2a+cos2bsin2a)]=2r2[sin2b+sin2a-sin(2a+2b)]
=2r2[2sin(a+b)cos(a-b)-2sin(a+b)cos(a+b)]=4r2sin(a+b)[cos(a-b)-cos(a+b)]
=4r2sin(a+b)[2sinasinb]=8r2sinasinbsinc=2absinc,
故原题得证.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询