椭圆具有怎样的几何性质?
2个回答
展开全部
椭圆的标准方程共分两种情况:当焦点在x轴时,椭圆的标准方程是:x²/a²+y²/b²=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y²/a²+x²/b²=1,(a>b>0)。
其中a²-c²=b²,推导:PF1+PF2>F1F2(P为椭圆上的点 F为焦点)。
不论焦点在X轴还是Y轴,椭圆始终关于X/Y/原点对称。
顶点:焦点在X轴时:长轴顶点:(-a,0),(a,0);短轴顶点:(0,b),(0,-b);焦点在Y轴时:长轴顶点:(0,-a),(0,a);短轴顶点:(b,0),(-b,0)。
扩展资料
椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其内表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明)。
离心率范围:0<e<1。离心率越小越接近于圆,越大则椭圆就越扁。
参考资料来源:百度百科-椭圆
参考资料来源:百度百科-椭圆的标准方程
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询