设u=f(√(x^2+y^2),z),其中f具有二阶连续偏导数...
展开全部
xy+x+y-z=e^z 两端对x求偏导:
y+1-z'x=z'xe^z z'x=(y+1)/(1+e^z)
两端对y求偏导:
x+1-z'y=z'ye^z z'y=(x+1)/(1+e^z)
u'x=f'1*1/2(x^2+y^2)^(-1/2)*2x+f'2*(y+1)/(1+e^z)
=xf'1(x^2+y^2)^(-1/2)+f'2*(y+1)/(1+e^z)
u''xy=(u'x)'y
=-xyf'1(x^2+y^2)^(-3/2)+x(x^2+y^2)^(-1/2)[f''11*1/2(x^2+y^2)^(-1/2)*2y+f''12*(x+1)/(1+e^z)]
+f'2[1+e^z-(y+1)e^z(x+1)/(1+e^z)]+(y+1)/(1+e^z)[f''21*1/2(x^2+y^2)^(-1/2)*2y+f''22*(x+1)/(1+e^z)]
=-xyf'1(x^2+y^2)^(-3/2)+x(x^2+y^2)^(-1/2)[f''11*y(x^2+y^2)^(-1/2)+f''12*(x+1)/(1+e^z)]
+f'2[1+e^z-(y+1)e^z(x+1)/(1+e^z)]+(y+1)/(1+e^z)[f''21*y(x^2+y^2)^(-1/2)+f''22*(x+1)/(1+e^z)]
∵f具有二阶连续偏导数.∴f''12=f''21 下面由你自己整理.
y+1-z'x=z'xe^z z'x=(y+1)/(1+e^z)
两端对y求偏导:
x+1-z'y=z'ye^z z'y=(x+1)/(1+e^z)
u'x=f'1*1/2(x^2+y^2)^(-1/2)*2x+f'2*(y+1)/(1+e^z)
=xf'1(x^2+y^2)^(-1/2)+f'2*(y+1)/(1+e^z)
u''xy=(u'x)'y
=-xyf'1(x^2+y^2)^(-3/2)+x(x^2+y^2)^(-1/2)[f''11*1/2(x^2+y^2)^(-1/2)*2y+f''12*(x+1)/(1+e^z)]
+f'2[1+e^z-(y+1)e^z(x+1)/(1+e^z)]+(y+1)/(1+e^z)[f''21*1/2(x^2+y^2)^(-1/2)*2y+f''22*(x+1)/(1+e^z)]
=-xyf'1(x^2+y^2)^(-3/2)+x(x^2+y^2)^(-1/2)[f''11*y(x^2+y^2)^(-1/2)+f''12*(x+1)/(1+e^z)]
+f'2[1+e^z-(y+1)e^z(x+1)/(1+e^z)]+(y+1)/(1+e^z)[f''21*y(x^2+y^2)^(-1/2)+f''22*(x+1)/(1+e^z)]
∵f具有二阶连续偏导数.∴f''12=f''21 下面由你自己整理.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询