证明矩阵A和B对称的充分必要条件是AB=BA

 我来答
抛下思念17
2022-07-08 · TA获得超过1.2万个赞
知道大有可为答主
回答量:7539
采纳率:99%
帮助的人:49.2万
展开全部
题目不完全,首先应有A和B均为n阶对称矩阵的条件.
1、若A、B是对称矩阵,则根据对称矩阵的定义,(AB)T=AB,(T是上标,以下相同),
而根据转置矩阵的重要性质,(AB)T=(B)T(A)T,而B、A都是对称矩阵,(B)T=B,(A)T=A,
所以AB=BA,即A和B可交换.
2、若AB=BA,即A和B是可交换矩阵,根据转置矩阵的重要性质,
(AB)T=(B)T(A)T,
而B、A都是对称矩阵,(B)T=B,(A)T=A,(B)T(A)T=BA,
故(AB)T=AB,
故AB是对称矩阵.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Sievers分析仪
2025-04-01 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式