在三角形ABC内P为任意一点,求证PA+PB+PC〈AB+BC 10
2009-07-10
展开全部
证明:延长CP到E,
则BE+BC>PC+PE ①
BE+PE>PB ②
AE+PE>PA ③
由①+②+③有,
PC+PB+PA+PE<BE+BC+ BE+PE+ AE+PE,
又因为AE+BE=AB,BC=AB,
所以PA+PB+PC<AB+BC。
则BE+BC>PC+PE ①
BE+PE>PB ②
AE+PE>PA ③
由①+②+③有,
PC+PB+PA+PE<BE+BC+ BE+PE+ AE+PE,
又因为AE+BE=AB,BC=AB,
所以PA+PB+PC<AB+BC。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询