二倍角公式推导过程
1个回答
展开全部
二倍角公式推导过程:
在二角和的公式中令两个角相等(B=A),就得到二倍角公式。
sin(A+B)=sinAcosB+cosAsinB〉sin2A=2sinAcosA。
cos(A+B)=cosAcosB-sinAsinB〉cos2A=(cosA)^2-(sinA)^2=(1-(sinA)^2-(sinA)^2=1-2(sinA)^2=2(cosA)^2-1。
tan(A+B)=(tanA+tanB)/(1-tanAtanB)〉tan2A=2tanA/【1-(tanA)^2】。
在余弦的二倍角公式中,解方程就得到半角公式。
cosx=1-2【sin(x/2)】^2〉sin(x/2)=+'-√【(1-cosx)/2】符号由(x/2)的象限决定,下同。
cosx=2【cos(x/2)】^2〉cos(x/2)=+'-√【1+cosx)/2】
两式的两边分别相除,得到:
tan(x/2)=+'-√【(1-cosx)/(1+cosx)】。
又tan(x/2)=sin(x/2)/cos(x/2)=2【sin(x/2)】^2/【2sin(x/2)cos(x/2)】=(1-cosx)/sinx=sinx/(1+cosx)。
在二角和的公式中令两个角相等(B=A),就得到二倍角公式。
sin(A+B)=sinAcosB+cosAsinB〉sin2A=2sinAcosA。
cos(A+B)=cosAcosB-sinAsinB〉cos2A=(cosA)^2-(sinA)^2=(1-(sinA)^2-(sinA)^2=1-2(sinA)^2=2(cosA)^2-1。
tan(A+B)=(tanA+tanB)/(1-tanAtanB)〉tan2A=2tanA/【1-(tanA)^2】。
在余弦的二倍角公式中,解方程就得到半角公式。
cosx=1-2【sin(x/2)】^2〉sin(x/2)=+'-√【(1-cosx)/2】符号由(x/2)的象限决定,下同。
cosx=2【cos(x/2)】^2〉cos(x/2)=+'-√【1+cosx)/2】
两式的两边分别相除,得到:
tan(x/2)=+'-√【(1-cosx)/(1+cosx)】。
又tan(x/2)=sin(x/2)/cos(x/2)=2【sin(x/2)】^2/【2sin(x/2)cos(x/2)】=(1-cosx)/sinx=sinx/(1+cosx)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
东莞大凡
2024-11-19 广告
2024-11-19 广告
板格标定棋盘是我们东莞市大凡光学科技有限公司在精密光学测量领域的重要工具。它采用高精度设计,确保每一个格板都达到严格的校准标准。通过使用板格标定棋盘,我们能够有效地对光学测量系统进行校准,从而提升测量的准确性和可靠性。这一工具在光学仪器的研...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询