二倍角公式推导过程
展开全部
二倍角公式推导过程:
在二角和的公式中令两个角相等(B=A),就得到二倍角公式。
sin(A+B)=sinAcosB+cosAsinB〉sin2A=2sinAcosA。
cos(A+B)=cosAcosB-sinAsinB〉cos2A=(cosA)^2-(sinA)^2=(1-(sinA)^2-(sinA)^2=1-2(sinA)^2=2(cosA)^2-1。
tan(A+B)=(tanA+tanB)/(1-tanAtanB)〉tan2A=2tanA/【1-(tanA)^2】。
在余弦的二倍角公式中,解方程就得到半角公式。
cosx=1-2【sin(x/2)】^2〉sin(x/2)=+'-√【(1-cosx)/2】符号由(x/2)的象限决定,下同。
cosx=2【cos(x/2)】^2〉cos(x/2)=+'-√【1+cosx)/2】
两式的两边分别相除,得到:
tan(x/2)=+'-√【(1-cosx)/(1+cosx)】。
又tan(x/2)=sin(x/2)/cos(x/2)=2【sin(x/2)】^2/【2sin(x/2)cos(x/2)】=(1-cosx)/sinx=sinx/(1+cosx)。
在二角和的公式中令两个角相等(B=A),就得到二倍角公式。
sin(A+B)=sinAcosB+cosAsinB〉sin2A=2sinAcosA。
cos(A+B)=cosAcosB-sinAsinB〉cos2A=(cosA)^2-(sinA)^2=(1-(sinA)^2-(sinA)^2=1-2(sinA)^2=2(cosA)^2-1。
tan(A+B)=(tanA+tanB)/(1-tanAtanB)〉tan2A=2tanA/【1-(tanA)^2】。
在余弦的二倍角公式中,解方程就得到半角公式。
cosx=1-2【sin(x/2)】^2〉sin(x/2)=+'-√【(1-cosx)/2】符号由(x/2)的象限决定,下同。
cosx=2【cos(x/2)】^2〉cos(x/2)=+'-√【1+cosx)/2】
两式的两边分别相除,得到:
tan(x/2)=+'-√【(1-cosx)/(1+cosx)】。
又tan(x/2)=sin(x/2)/cos(x/2)=2【sin(x/2)】^2/【2sin(x/2)cos(x/2)】=(1-cosx)/sinx=sinx/(1+cosx)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询